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A B S T R A C T

People learn about the world by making choices and experiencing feedback—a process characterized by models
of reinforcement learning in which people learn to associate their actions with rewarding outcomes. Although
reinforcement models provide compelling accounts of feedback-based learning in nonsocial contexts, social
interactions typically involve inferences of others' trait characteristics, which may be independent of their re-
ward value. As a result, people may learn differently about humans and nonhumans through reinforcement. In
two experiments (and a pilot study), participants interacted with human partners or slot machines that shared
money. Computational modeling of behavior revealed different patterns of learning for humans and non-hu-
mans: participants relied more on feedback indicating trait generosity (relative to monetary reward) when
learning about humans but relied more on monetary reward (relative to generosity) when learning about slots.
Furthermore, this pattern of learning had implications for attitudes: whereas participants preferred generous
humans, they preferred rewarding slot machines, relative to their respective counterparts. These findings reveal
a distinct role for reinforcement learning in social cognition, showing that humans preferentially form abstract
trait inferences about other people through feedback in addition to reward associations.

1. Introduction

We often learn about other people through trial and error: we en-
gage with them and learn from their responses. These interactions re-
semble reinforcement learning, in which people and animals learn by
making choices and experiencing feedback (Daw, Gershman, Seymour,
Dayan, & Dolan, 2011; Sutton & Barto, 1998). For instance, rats repeat
lever presses that lead to food rewards (Balleine & Dickinson, 1998) and
humans return to slot machines that pay out cash (Daw, O'Doherty,
Dayan, & Seymour, 2006). But how well do such models characterize
social interaction? While existing models of reinforcement explain how
people learn from rewards in non-social contexts, human social inter-
actions often involve more abstract inferences about others' traits—in-
ferences that guide social behavior beyond reward associations. Rather
than returning solely to others who provide concrete rewards, people
may also return to those who display valuable traits. In this research,
we examined how social contexts transform the dynamics of

reinforcement learning, asking whether people are more likely to learn
from traits, over and above rewards, in social compared with nonsocial
interactions.

1.1. Traits as a source of value

Perceivers frequently attribute stable traits to others, which can be
used to predict others' future behavior and thus estimate the value of a
social interaction (Hamilton, Katz, & Leirer, 1980; Hastie, 1980; Heider,
1958; Rim, Uleman, & Trope, 2009; Srull & Wyer, 1989; Winter &
Uleman, 1984). For example, a colleague viewed as “generous” can be
expected to treat us kindly across a range of situations. Although people
with desirable traits may also typically provide rewarding out-
comes—for example, when a generous colleague treats us to lunch—-
traits and rewards can diverge, as when a generous colleague has few
material resources to share.

Research shows that in social interactions, people learn to associate
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others with both rewards and traits. In a study by Hackel, Doll, and
Amodio (2015), participants learned about humans who shared money
and slot machines that paid money (in the form of points later ex-
changed for cash). Some humans and slots offered larger amounts of
money than others (offering high reward value) and, independently,
some offered larger proportions of available money than others (in-
dicating trait-level generosity). For instance, one target shared 20
points out of 100, on average, whereas another shared 10 points out of
25; the former offered a larger reward whereas the latter was more
generous. Previous models of reinforcement would predict that rewards
alone should reinforce behavior: people should return to partners who
provide large amounts of money. Yet, participants in Hackel et al.
(2015) learned to select partners based on both reward and trait feed-
back, as indicated by their behavior and by neural activity in ventral
striatum, a region strongly linked to reinforcement (Garrison, Erdeniz,
& Done, 2013). Moreover, people relied more strongly on generosity
feedback than reward feedback when choosing partners for future in-
teractions. Hence, this research demonstrated that both reward and
trait information may reinforce choice.

In the present research, we asked whether this capacity to infer
traits through reinforcement, in addition to rewards, is enhanced in
social contexts, in which case it may reveal a functional role of social
cognition in reinforcement learning. Although people may attribute
abstract, stable characteristics to both humans and objects (Baetens,
Ma, Steen, & Van Overwalle, 2013; Baetens, Ma, & Van Overwalle,
2017; Heider, 1958; Riva, Sacchi, & Brambilla, 2015; Spunt & Adolphs,
2015; Waytz, Heafner, & Epley, 2014) and learn from rewards involving
both (Lin, Adolphs, & Rangel, 2011), traits provide a richer re-
presentation of conceptual information, beyond reward value, which
may help people flexibly choose partners relevant to one's current goals
(Amodio, 2019; Hackel, Mende-Siedlecki, Loken, & Amodio, 2019).

Although prior research by Hackel et al. (2015) assessed trait and
reward learning from both human and nonhuman agents, it was not
optimized for determining whether these two forms of reinforcement
learning are differentially engaged in social and nonsocial contexts. For

example, in the task used by Hackel et al. (2015), trials alternated be-
tween human and slot machine interactions, potentially blurring the
social and nonsocial nature of interactions or leading participants to
anthropomorphize slots (Hsu & Jenkins, 2015). Furthermore, human
and slot machine stimuli were not equated on factors that would have
permitted a strong direct test of social context (e.g., visual appearance).
Indeed, no significant differences between social and non-social target
interactions were observed in participants' neural activity or in com-
putational modeling of learning, and small differences observed in
participants' choice behavior may have been due to extraneous factors
(e.g., better memory for face stimuli than slot stimuli; Gauthier &
Nelson, 2001). Hence, the results of Hackel et al. (2015) did not directly
inform whether different forms of learning are engaged to support so-
cial as opposed to nonsocial cognition. In fact, the lack of clear differ-
ences observed by Hackel et al. (2015) raised the question of whether
trait-level reinforcement related to social cognition at all; instead,
“trait-learning” might have reflected a domain-general process of
learning from relative (versus absolute) rewards, wherein people simply
contrast rewards to contextual baselines (Holroyd, Larsen, & Cohen,
2004; Kahneman & Tversky, 1979; Palminteri, Khamassi, Joffily, &
Coricelli, 2015; Rigoli, Rutledge, Dayan, & Dolan, 2016). Due to these
ambiguities, the question of whether reinforcement learning differs
across social versus nonsocial interactions remains unaddressed.

The present work was designed explicitly to test whether trait- and
reward-based forms of learning are differentially engaged by social and
nonsocial agents. To this end, we examined whether social contexts
transform how people learn from feedback, such that people rely more
on trait learning, relative to reward learning, in social versus nonsocial
interactions. By doing so, we sought to understand how reinforcement
learning contributes to interactive social behavior and how social
learning differs from non-social learning.

2. Study 1

In Study 1, we tested the hypothesis that people prioritize trait-

Fig. 1. Schematic of learning task. (a) On each round, participants chose to interact with one of two target characters represented by fractal images, described as
other humans or slot machines. Feedback indicated the reward obtained from the target and the available point pool, which in turn indicated the target's generosity
(i.e., proportion shared). (b) Targets varied independently in the average reward and generosity with which they were associated.
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based learning, compared with reward-based learning, when inter-
acting with other humans, but learn comparatively more from rewards
when interacting with nonhumans (e.g., slot machines). We further
expected these differences in learning to guide explicit evaluations,
leading participants to prefer rewarding slot machines and generous
humans relative to their respective counterparts.

2.1. Method

2.1.1. Overview
In a pre-registered experiment, participants completed a version of

the Hackel et al. (2015) task (Fig. 1), modified such that (a) participants
interacted with only humans or slot machines in between-subjects
conditions; (b) identical visual stimuli (fractal images) represented
humans and slots; (c) the statistical distributions of reward feedback
and generosity feedback were matched so that both signals would, in
principle, be equivalently easy to learn; and (d) feedback was described
using identical language across human and slot interactions, in contrast
to past work and a pilot study (reported in Supplemental materials) in
which different language was used to describe feedback from humans
(“Shared”) and slot machines (“Payout”). This modified task design
ensured that any differences in learning would be due only to the so-
cial/nonsocial task framing.

2.1.2. Participants
One hundred seventy participants were recruited through Amazon's

Mechanical Turk (68 female, 101 male, 1 nonbinary; mean
age = 35.69, SD = 10.85) in exchange for payment. Sample size was
determined with a non-parametric power analysis based on data from a
pilot study (see Supplemental materials for details). Data collection was
completed prior to analyses. Participants provided informed consent in
accordance with approval from the NYU University Committee on
Activities Involving Human Subjects.

Based on past research using reinforcement tasks in online popu-
lations (Gillan, Otto, Phelps, & Daw, 2015; Hackel & Zaki, 2018), data
were excluded from analysis if a participant responded with mean la-
tencies± 2 standard deviations from the group mean, did not respond
on more than 10% of trials, or pressed the same key on more than 90%
of trials. These a priori criteria excluded data from 32 participants,
leaving 70 participants in the “human” condition and 68 participants in
the “slot” condition. Results remained significant with a more lenient
rule that excluded fewer participants (see Supplemental materials).

2.1.3. Procedure
Following random assignment to one of two conditions, participants

were told they would learn about other humans or computerized slot
machines. In the “human” condition, participants were told they would
learn about four previous MTurk workers (“Deciders”) who had made
many decisions to divide pools of points worth money with a future
participant (“Recipient”). Participants were informed they would play
in the “Recipient” role, and that points they earned by choosing
Deciders who shared would be exchanged for money at the end of the
game. Participants were further informed that a different pool of points
was made available by the experimenters to each Decider on each
round, and the Decider could decide how many points to share.
Participants were shown four fractal images, which they were told re-
presented the four previous players.

In the “slot” condition, participants received identical instructions,
with one exception: they were told they would be learning about four
computerized slot machines, which had determined how many points to
pay out from pools created by the experimenters. Participants viewed
the same four fractal images as in the human condition, but these were
said to represent the four slot machines.

Participants then completed the interaction task, beginning with a
learning phase (72 trials). On each trial, participants saw two fractal
images representing either human players or slot machines. Each

possible pairing of images was viewed 12 times; the left-right location
of each image was counterbalanced. Participants were required to se-
lect an image within 3 s via button-press. Responses were immediately
followed by a 3-second feedback display indicating the number of
points received (labeled “you get”) and the point pool available to the
chosen target for that trial (labeled “out of”). The correspondence be-
tween the four fractal images and their feedback patterns (Fig. 1) was
randomized across participants to control for any effects of a particular
fractal stimulus.

Reward and generosity feedback were generated by using the
average values displayed in Fig. 1, plus Gaussian noise with SD = 10
for reward and SD = 0.10 for generosity. These standard deviations
were equivalent given the difference in scaling of the two distributions,
rendering the distributions equally discriminable. Values followed a
censored normal distribution, such that reward value had to be at least
2 points and generosity had to be at least 0.01, to ensure meaningful
values. To set point pools displayed during feedback, reward feedback
was rounded to the nearest integer and divided by generosity, and the
resulting pool value was rounded to the nearest integer.

Participants next completed a test phase, in which they made ad-
ditional choices without receiving feedback. In this phase, the point
pool available for each option appeared above each image before
choice, so that participants could integrate these point pools with their
learned representations of generosity to make decisions. For instance, a
Decider who has 100 points available and previously had shared 40%
on average would be expected to share 40 points. Participants com-
pleted 72 trials of the test phase, again featuring each possible pair of
images. To determine the point pools shown above each image, a
random integer from 10 to 100 was generated for one target. This
amount was multiplied by one of five ratios, symmetric around 1:1
(0.67, 0.9, 1, 1.11, 1.5), to generate the second target's point pool. We
included 24 trials at a 1:1 ratio, because these trials may be particularly
informative about preferences rooted solely in prior experience. All
other ratios appeared 12 times (twice with each image pair).

Following the main task, participants completed three sets of rat-
ings. First, to test how learning related to explicit evaluations, partici-
pants rated how much they liked each human or slot machine, using a
7-point Likert-type scale (1 = not at all, 7 = very much). Next, to
assess whether participants explicitly used a particular learning
strategy, participants reported the extent to which they thought about
each target's personality and the number of points offered by each
target, using the same seven-point scale (see Supplemental Results). As
an exploratory measure, participants completed a questionnaire asses-
sing individual differences in anthropomorphism (Waytz, Cacioppo, &
Epley, 2010; see Supplemental Results). Finally, participants completed
exploratory questions probing their acceptance of the cover story (see
Supplemental Results). Upon completing these measures, participants
were paid a bonus based on the number of points they accrued.

Information regarding our procedure for determining sample size,
all data exclusions, all manipulations, and all measures included in this
research are fully reported in this article. Materials and de-identified
data are available at: https://osf.io/gxdeu/. A pre-registration docu-
ment is available at: https://aspredicted.org/te25g.pdf.

2.2. Results

2.2.1. Computational model
Were participants more likely to learn trait information than reward

information when interacting with humans as opposed to slot ma-
chines? To test this key hypothesis, we fit behavioral data from the
learning and test phases to a computational model validated in previous
work (Hackel et al., 2015; Hackel and Zaki, 2018), which modeled trial-
by-trial dynamics of learning in order to estimate how participants
weighted each type of feedback during learning (Hackel and Amodio,
2018). The model assumes that people update estimates of both reward
value and generosity upon receiving trial-by-trial feedback. During
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subsequent choices, reward and generosity information is combined
using a weighting parameter w. This parameter indicates the relative
influence of reward feedback and generosity feedback on choice, ran-
ging between 0 (reliance only on reward value) and 1 (reliance only on
generosity). (For full model specification and parameter fits, see Sup-
plemental Methods and Table S1.)

We hypothesized that the balance of trait- and reward-based
learning would shift toward traits when the task was framed as social as
compared with nonsocial. We therefore compared the weighting para-
meter (w) across the two conditions using rank sum tests due to non-
normality of the distribution. As hypothesized, the w parameter was
higher for human targets (median = 0.57), as compared to slot ma-
chines (median = 0.26), z = −3.78, p < .001 (Fig. 2): Participants
relied more on generosity information when interacting with humans
than with slots, but more on reward information when interacting with
slot machines than with humans. Analogous regression analyses, which
fit data separately for learning and test phases, produced similar results
(see Supplemental Results and Tables S2–S3).

2.2.2. Explicit evaluations
We next examined participants' reported liking of each target to test

whether differences in learning led people to prefer generous humans
and rewarding slot machines, relative to their respective counterparts.
Ratings were submitted to a 2 (Generosity: High, Low) × 2 (Reward
Value: High, Low) × 2 (Target Type: Human, Slot) repeated measures
ANOVA, with Target Type as a between-participants factor (Table S4).
We report partial eta-squared effect sizes with 90% confidence intervals
(CIs), following Lakens (2013).

Critically, the main effects for reward and generosity were each
moderated by target type (Fig. 3). First, a Reward Value × Target Type
interaction, F(1,136) = 16.76, p < .001, ηP2 = 0.11, 90% CI = [0.04,
0.20], indicated that the influence of reward value depended on target
type: simple effects analysis revealed that reward value strongly influ-
enced liking in the slot condition, F(1,69) = 75.81, p < .001,
ηP

2 = 0.52, 90% CI = [0.38, 0.62], but had a relatively weaker effect
on liking in the human condition, F(1,67) = 20.55, p < .001,
ηP

2 = 0.23, 90% CI = [0.10, 0.36]. In other words, participants
strongly preferred slot machines that provided high as opposed to low
monetary rewards, but more weakly differentiated humans who pro-
vided high or low monetary rewards.

Second, and in contrast, a Generosity × Target Type interaction, F
(1,136) = 9.58, p = .002, ηP2 = 0.07, 90% CI = [0.01, 0.14], in-
dicated a strong effect of generosity on liking in the human condition, F
(1,67) = 79.21, p < .001, ηP2 = 0.54, 90% CI = [0.40, 0.64], but a
weaker effect of generosity on liking in the slot condition, F
(1,69) = 17.45, p < .001, ηP2 = 0.20, 90% CI = [0.07, 0.33]. That is,
participants strongly preferred generous humans over non-generous
humans but more weakly differentiated among slots machines based on
generosity.

These results suggest that differences in the way people learn about
human and nonhuman targets through reinforcement shape their atti-
tudes toward each. Participants who focus more on generosity feedback
during social interactions might more strongly prefer generous humans,
and those who focus more on reward feedback during nonsocial inter-
actions might more strongly prefer rewarding slots. To test this idea, we
examined the correlation between participants' w parameters during the
learning phase and their explicit preferences for targets varying in
generosity and reward. We computed a difference score indicating the
degree to which each participant's evaluations reflected the generosity
versus reward value associated with targets (see Supplemental
Methods). This measure was analogous to the w parameter, which in-
dicates relatively greater reliance on generosity versus reward in
learning. Across human and slot conditions, higher w scores strongly
predicted preferences for targets associated with greater generosity
relative to reward, r(136) = 0.72, p < .001 (Fig. 4). Thus, target-
specific differences during learning—an emphasis on generosity for
humans but reward for slots—were associated with different criteria for
evaluating humans versus slots.

2.3. Discussion

In Study 1, participants learned more from traits than rewards when
interacting with humans as opposed to slots, demonstrating that social
framing influences what people learn through reinforcement.
Moreover, this finding rules out the possibility that participants chose
partners who shared a large proportion due solely to nonsocial learning
from relative (versus absolute) rewards—for instance, adapting reward
responses to contextual baselines. Instead, participants demonstrated
enhanced learning from proportion feedback specifically in social in-
teractions, consistent with the view that participants inferred trait

Fig. 2. Study 1 results in the learning and test phases. (a) Degree of reinforcement learning from rewards as opposed to generosity is indicated by a weighting
parameter (w), which reflects relative reliance on reward (w = 0) versus generosity (w = 1) feedback. This parameter was higher—indicating greater reliance on
generosity feedback—when participants were told they were interacting with other humans as opposed to slot machines. Boxes indicate interquartile range; whiskers
indicate minimum and maximum points; central lines indicate the median; dots show individual data points, jittered for visualization. (b) Choice of human partners
or slot machines in test phase. The plot shows the proportion of choices for which participants selected the target onscreen that was higher in generosity, and,
independently, the proportion of choices for which participants selected the target that was higher in reward value. Participants relied more on generosity knowledge
when told they were interacting with human partners as opposed to slot machines. The dotted line indicates chance. Error bars show standard error of the mean, with
within-participants adjustment (Morey, 2008).
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characteristics and valued partners with generous character. Finally,
differences in learning guided explicit evaluations: participants pre-
ferred generous humans and rewarding slot machines, relative to their
counterparts. These findings replicated a pilot study reported in
Supplemental materials (see Figs. S1–S3, Tables S2–S3 and S5–S6).

3. Study 2

In Study 2, we aimed to replicate the findings of Study 1 while
employing a fully within-participants design, allowing us to test whe-
ther differences in learning persisted even when participants en-
countered both humans and nonhumans. This change yielded a more
stringent test of our hypothesis that learning style varies according to
the social or nonsocial context, such that it may even change within
participants as they shift between contexts.

3.1. Method

3.1.1. Participants
We recruited 122 individuals through Amazon's Mechanical Turk

(54 female, 68 male, mean age = 33.98, SD = 9.72) who participated
in exchange for payment. Sample size was determined by aiming for
100 participants, heuristically chosen to provide ample power for the
within-participants design. Twenty additional participants were re-
cruited to compensate for any necessary subject exclusions, and two
additional MTurk workers completed the task without submitting their
work for payment. Using the exclusion rule described in Study 1, data
from 19 participants were excluded, leaving 103 participants for ana-
lysis (47 who viewed humans first, 56 who viewed slots first). We also
explored robustness using the more lenient rule noted in Study 1, which
excluded data from five participants. All results remained the same
except for one that became stronger (see Supplemental materials).
Participants were randomly assigned to complete either the human or
slot block first.

3.1.2. Procedure
The procedure was similar to that of Study 1, with one exception. To

allow time for two learning blocks, we omitted the test phase; instead,
participants completed two consecutive blocks of learning trials (60
trials each). Although this change permitted a within-subjects test
without excessive fatigue, it provided fewer responses overall and in-
cluded only trials in which participants were still learning—a tradeoff
yielding a more conservative test of our hypothesis. For half the par-
ticipants, Block 1 involved learning from humans depicted by four
fractal images and Block 2 involved learning from computerized slot
machines depicted by four new fractal images. For the other half of
participants, this order was reversed. Again, the role assigned to each
fractal image was randomized across participants, as was the descrip-
tion of each image as human or slot. Participants completed evaluation
ratings after each learning block and, at the end of the session, ques-
tionnaires assessing strategy and anthropomorphism. Due to an error,
11 participants saw the wrong images during some evaluation ratings
and were therefore excluded from analysis of these ratings (but in-
cluded in other analyses).

3.2. Results

3.2.1. Computational model
We fit data from each learning block to the computational model

described in Study 1, allowing separate w parameters for humans and
slots (see Table S7 for all parameter fits). This procedure permitted us to
test for within-participant differences in w across target types. As

Fig. 3. The degree to which participants liked hu-
mans and slot machines in Study 1, based on the
reward and generosity associated with each target
during learning. Target generosity had a stronger
influence on liking of humans than slots, whereas
target reward value had a stronger influence on
ratings of slots than humans. Error bars show stan-
dard error of the mean, adjusted for within-partici-
pant comparisons (Morey, 2008).

Fig. 4. Relationship between weighting parameter (w) during learning and
reliance on generosity versus rewards in post-task evaluations in Study 1. The x-
axis shows a participant's w parameter, indicating whether they relied more on
generosity (higher values) or reward (lower values) in learning. The y-axis
shows an analogous difference score indicating the extent to which a partici-
pant liked targets based on how generous they were (higher values) versus how
rewarding they were (lower values). Shaded region indicates 95% confidence
interval.
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hypothesized, and replicating Study 1, the w parameter was higher
when learning about humans (median = 0.55) compared to slot ma-
chines (median = 0.39), z = −2.29, p = .02 (sign rank test). Again,
participants learned relatively more from generosity when interacting
with humans and relatively more from reward when interacting with
slots machines, even though targets behaved identically (Fig. 5; see
Supplemental material for regression analyses yielding similar results).

Notably, while this effect replicated the pattern observed in Study 1,
it was attenuated somewhat relative to Study 1 and the pilot study (see
Supplemental Results). This attenuated effect may have been due to the
use of a within-participants design. Indeed, an effect of order emerged,
suggesting that the target type encountered in the first block may have
influenced responses to the second target (Supplemental material,
Tables S8–S9). When considering only the first block viewed by each
participant, Study 2 replicated the between-subjects pattern of Study 1:
the w parameter was higher among participants who interacted with
humans (median = 0.59) relative to those who interacted with slots
(median = 0.34), z = −3.09, p = .002 (rank sum test).

3.2.2. Explicit evaluations
We again examined participants' reported liking of each target to

determine whether people preferred generous humans and rewarding
slot machines, relative to their respective counterparts. Ratings of liking
for each target were examined in a 2 (Generosity: High, Low) × 2
(Reward Value: High, Low) × 2 (Target Type: Human, Slot) repeated
measures ANOVA (Fig. 6, Table S10). As in Study 1, a Reward × Target
Type interaction, F(1, 94) = 3.94, p = .05, ηP

2 = 0.04, 90%
CI = [0.000004, 0.12], indicated that the effect of reward value de-
pended on target type. Reward value strongly influenced evaluations of
slot machines, F(1,94) = 77.57, p < .001, ηP

2 = 0.45, 90%
CI = [0.33, 0.55], but had a relatively weaker effect on evaluations of
humans, F(1,94) = 46.89, p < .001, ηP2 = 0.33, 90% CI = [0.21,
0.44]. Although a Target Type × Generosity interaction was not sta-
tistically significant, F(1,94) = 2.63, p = .11, ηP

2 = 0.03,1 it was
qualified by a significant three-way interaction in a model that included
Target Order F(1,93) = 7.43, p = .008, ηP2 = 0.07, 90% CI = [0.01,
0.17] (Table S11, Fig. S4). Participants who first saw slot machines
relied on generosity more when later evaluating humans, as in the
Target Type × Generosity interaction of Study 1, F(1,51) = 8.40,
p = .006, ηP2 = 0.14, 90% CI = [0.03, 0.29]. Among participants who
saw humans first, this interaction was not statistically significant, F
(1,42) = 0.93, p = .34, ηP2 = 0.02, suggesting that initial exposure to
humans may lead to greater reliance on generosity feedback when
subsequently interacting with slots (see Supplemental materials for
more details).

Finally, as in Study 1, we tested whether individual differences in
learning related to patterns of explicit evaluation. We examined the
relationship between the w parameter for each target type and the
difference score indicating the degree to which participants' evaluations
of each target type reflected generosity versus reward (Supplemental
Methods). Replicating Study 1, the w parameter during learning pre-
dicted subsequent reliance on generosity, relative to reward value, in
evaluations of humans, r(93) = 0.78, p < .001, and slots, r
(93) = 0.73, p < .001. Participants who learned more from generosity
feedback liked generous humans more, once again linking differences in
learning to differences in evaluations (Fig. S5; see also Supplemental
Results for mediation analysis).

3.3. Discussion

Study 2 results replicated those of Study 1 using a within-subjects

design. This design provided a particularly stringent test of our hy-
pothesis, given that participants completed identical tasks twice, with
only one difference in the instructions, and with fewer trials.
Nonetheless, a social framing still altered learning: participants relied
more on generosity feedback—relative to reward feedback—when
learning about humans as opposed to slot machines.

4. General discussion

Do people learn different information through reinforcement in
social and nonsocial interactions? In two studies and a pilot study, we
found that participants prioritized trait feedback relative to reward
feedback when interacting with humans as opposed to slot machines.
Specifically, they were more likely to choose interactions with gen-
erous, as opposed to rewarding, human partners. Moreover, these dif-
ferences in learning predicted subsequent evaluations: participants
most strongly preferred humans who were generous but slot machines
that were rewarding. Thus, these findings reveal an influential role for
trait inference in reinforcement learning that emerges more strongly in
social contexts.

4.1. Implications for social cognition

Our findings offer theoretical implications for social cognition,
learning, and attitudes. First, they demonstrate that social contexts
transform the dynamics of reinforcement learning. Existing models of
reinforcement learning assume that agents maximize rewards, typically
indicated by their tendency to repeat choices after receiving reward
feedback. Yet, we found that participants preferred interactions with
generous partners, even when generosity was statistically independent
of reward. Indeed, to maximize task earnings, the optimal strategy in
the learning phase would have been to ignore generosity feedback and
learn entirely from reward feedback (Hackel et al., 2015). Nonetheless,
the social framing led people to prioritize generosity feedback over
reward feedback when choosing partners. Thus, while prior work es-
tablished a difference between reward learning and trait learning
(Hackel et al., 2015), the present findings establish a difference be-
tween social learning and non-social learning. Crucially, our results
demonstrate a unique contribution of social cognition to learning,

Fig. 5. Reinforcement learning from rewards as opposed to generosity in Study
2, in which participants interacted with both humans and slot machines in
within-participant conditions (order counterbalanced). Learning style is in-
dicated by a weighting parameter (w) that reflects relative reliance on reward
(w = 0) versus generosity (w = 1) feedback. This parameter was high-
er—indicating greater reliance on generosity feedback—when participants
were told they were interacting with other humans as opposed to slot machines.
Boxes indicate interquartile range; whiskers indicate minimum and maximum
points; central lines indicate the median; dots show individual data points,
jittered for visualization.

1 This interaction was the only result that changed when using the more le-
nient exclusion rule noted in Study 1, becoming more robust, F(1,107) = 4.90,
p = .03, ηP2 = 0.04, 90% CI = [0.002, 0.12].
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above and beyond any potential nonsocial effects of relative reward.
Why did generosity feedback reinforce choice more strongly in so-

cial than non-social interactions? One possibility is that participants
expected other humans—but not slots—to have stable traits across
time, while expecting reward values to be unstable across time given
the variation in point pools allotted to players across trials. If this were
the case, the proportion of giving, rather than the absolute amounts,
would provide a more stable basis for predicting future outcomes
during social interactions. Although we did not cue participants to ex-
pect these task features, the assumption that trait characteristics remain
stable over time is common among human perceivers (Kelley, 1973).
Consistent with this idea, people especially desire fair partners rather
than wealthy ones when wealth is unstable and difficult to predict
across time (Raihani & Barclay, 2016), presumably because fairness
represents a stable trait that can predict interaction outcomes even
when wealth fluctuates. As such, other dispositional inferences—such
as a person's chronic goals or values—may offer a similar basis for
learning; moreover, such learning may depend on individual or cultural
differences in the tendency to attribute behavior to stable internal
causes (Markus & Kitayama, 1991; Morris & Peng, 1994). It is also
possible that participants experienced the generosity of sharing as af-
fectively pleasing when playing with humans, but not slot machines,
consistent with the idea that social rewards can reinforce behavior (Lin
et al., 2011). Each of these possibilities are consistent with our broad
conclusions, and it will be interesting to explore these and other me-
chanisms in future research.

Trait learning was not completely unique to social interactions,
however: participants encoded proportional outcomes from slots, albeit
to a lesser extent. Indeed, Study 2 suggested that the learning style
adopted in one context might affect learning in another: participants
who first viewed humans relied more on generosity feedback when later
viewing slot machines. This finding comports with past work (Hackel
et al., 2015) and raises the possibility that anthropomorphism might
play a role in learning (Hsu & Jenkins, 2015; see also Supplemental
Analyses), as might relative reward encoding (Holroyd et al., 2004;
Palminteri et al., 2015). More broadly, the observed effects of target
order demonstrate an intriguing degree of malleability in learning
across social and non-social contexts.

Participants also learned from rewards in social interactions—a
form of learning that is well-characterized in nonsocial contexts, but
typically is not featured in models of social cognition (Amodio, 2019;
Amodio & Ratner, 2011; Jones, 1985). Specifically, participants chose
and liked partners who previously offered rewarding outcomes, re-
gardless of their generosity, consistent with prior work (Hackel et al.,

2015; Hackel, Berg, Lindström, & Amodio, 2019; Hackel & Zaki, 2018).
By dissociating modes of reinforcement learning in social and nonsocial
contexts, these findings reveal distinct contributions of reward proces-
sing and trait impressions to behavior.

These results further suggest a link between reinforcement learning
and attitude formation. Participants' attitudes toward humans were
strongly influenced by generosity but only weakly influenced by re-
wards, whereas attitudes toward slot machines were not as strongly
influenced by generosity. These differences in evaluation were asso-
ciated with individual patterns of learning: participants who learned
more from generosity feedback also liked generous targets more. Thus,
it appears that participants' evaluations reflected their style of learning
in addition to the objective feedback provided.

4.2. Implications for reinforcement learning

Beyond their implications for social cognition, these findings de-
monstrate that task framing can alter patterns of reinforcement learning
and choice in a top-down manner. Past work has shown that bottom-up
features of a task—such as reward statistics—alter learning in social
and nonsocial contexts (Behrens, Hunt, Woolrich, & Rushworth, 2008;
Behrens, Woolrich, Walton, & Rushworth, 2007). In the present studies,
participants completed identical tasks, yet behavior depended on
whether they believed they were interacting with humans or slot ma-
chines. Thus, reinforcement learning reflects not only environmental
statistics, but also top-down beliefs. Such top-down beliefs might in-
form one's internal model of the environment, consistent with model-
based reinforcement learning, or might alter which features of the en-
vironment feel rewarding, consistent with model-free reinforcement
learning (Daw et al., 2011). Either way, reinforcement learning may
vary across situations; although reinforcement learning studies often
use stimuli such as slot machines, the present work suggests that real-
life learning can vary based on people's expectations in a given situa-
tion.

4.3. Conclusions

To date, models of reinforcement learning have focused on the
learning of reward value. Our results show that people also learn trait
attributes through reinforcement, and that they do so selectively in
human compared with nonhuman interactions. Indeed, the tendency to
infer traits through reinforcement distinguished social from nonsocial
interactions—a pattern that begins to reveal how reinforcement
learning supports human social cognition.

Fig. 6. The degree to which participants liked humans and slot machines in Study 2, based on the reward and generosity associated with each target during learning.
Error bars show standard error of the mean, adjusted for within-participant comparisons (Morey, 2008).
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Open practices

Materials and data for the present experiments are available at
https://osf.io/gxdeu/. A pre-registration document for Study 1 is
available at https://aspredicted.org/te25g.pdf.
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