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Abstract 

Social media has become a modern arena for human life, with billions of daily users worldwide. 

The intense popularity of social media is often attributed to a psychological need for social 

rewards (“likes”), portraying the online world as a Skinner Box for the modern human. Yet 

despite such portrayals, empirical evidence for social media engagement as reward-based 

behavior remains scant. Here, we apply a computational approach to directly test whether 

reward learning mechanisms contribute to social media behavior. We analyze over one million 

posts from over 4,000 individuals on multiple social media platforms, using computational 

models based on reinforcement learning theory. Our results consistently show that human 

behavior on social media conforms qualitatively and quantitatively to the principles of reward 

learning. Specifically, social media users spaced their posts to maximize the average rate of 

accrued social rewards, in a manner subject to both the effort cost of posting and the 

opportunity cost of inaction. Results further reveal meaningful individual difference profiles in 

social reward learning on social media. Finally, an online experiment (n = 176), mimicking key 

aspects of social media, verify that social rewards causally influence behavior as posited by 

our computational account. Together, these findings support a reward learning account of 

social media engagement and offer new insights into this emergent mode of modern human 

behavior.  
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Introduction 

What drives people to engage, sometimes obsessively, with others on social media? In 2019, 

more than four billion people spent1 several hours per day, on average, on platforms such as 

Instagram, Facebook, Twitter, and other more specialized forums. This pattern of social media 

engagement has been likened to an addiction, in which people are driven to pursue positive 

online social feedback2,3 to the detriment of direct social interaction and even basic needs like 

eating and drinking4,5. 

Although a variety of motives might lead people to use social media6, the popular 

portrayal of social media engagement as a Skinner Box for the modern human suggests it 

represents a form of reinforcement learning (RL)7 driven by social rewards. Yet despite this 

common portrayal, empirical evidence for social media engagement as reward-based behavior 

has been elusive. In the present research, we developed and applied a computational approach 

to large scale online datasets of social media use to directly test whether, and how, reward 

learning mechanisms contribute to social media behavior. In doing so, we sought to provide 

new insights into this emergent mode of human interaction while testing a learning theory 

model of real-life human social behavior on an unprecedented scale. 

In online social media platforms, feedback on one’s behavior often comes in the form 

of a “like”—a signal of approval from another user regarding one’s post2—which is assumed 

to function as a social reward. Indeed, several lines of research support the idea that “likes” 

engage similar motivational mechanisms as other, more basic, types of rewards such as food 

or money. In humans, brain imaging studies have consistently shown that likes8,9, and other 

social rewards, are processed by neural and computational mechanisms closely overlapping 

with those processing non-social rewards10–14. Although neuroscientific studies are largely 

constrained to the laboratory, such findings suggest that social media use might reflect the 
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process of reward maximization, similar to what is observed across species in response to non-

social rewards.  

Reward learning processes on social media platforms should also be evident in 

behavior. Indeed, the receipt of likes has behavioral consequences consistent with reward 

learning. For example, the number of likes received for a post predicts satisfaction with that 

post, and in turn, more self-reported happiness15,16. Similarly, a user’s social media activity 

increases after a post, suggestive of reward anticipation17, and users provide more social 

feedback to others after receiving feedback themselves18. In addition to its direct effect on 

reward, the subjective value of likes is also influenced by social comparison in a way similar 

to non-social rewards3,19,20, suggesting that social rewards, just like non-social rewards21, might 

be relative, rather than absolute in nature. Together, these existing studies support the idea that 

social media engagement reflects reward mechanisms.  

However, as most studies of online social rewards to date utilize self-report 

methods22,23, direct evidence for a social reward learning account of behavior on social media 

is lacking. Furthermore, studies that do apply RL approaches to social media data have 

typically not sought to delineate psychological mechanisms underlying social media use, but 

instead to optimize software that interacts with users (e.g., by training recommender systems24). 

In addition, results from the few studies that have taken a quantitative approach to human 

behavior are mixed. In one study, negative evaluation of a post—a type of social punishment—

led to deterioration in the quality of future posts, rather than the improvement predicted by 

learning theory25. By contrast, in another study, receiving more replies for a post on a specific 

social media discussion forum predicted a subsequent increase in the time spent on that forum 

relative to others, consistent with learning theory26. Thus, it remains unclear whether basic 

mechanisms of reward learning can help explain actual behavior on social media.  
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In the present research, we directly test whether social media engagement can be 

formally characterized as a form of reward learning. By analyzing more than one million posts 

from over 4000 individual users on multiple distinct social media platforms (see Methods), we 

assess, using computational modeling, how the putative social rewards received for posts in 

the past (e.g., the likes received when posting a “selfie”) can help explain future behavior. Our 

computational modeling approach allows us to explicitly test how cross-species reward 

learning mechanisms contribute to this uniquely human mode of social behavior27. We also 

confirm, using an online experiment resembling common social media platforms (n = 176), 

that social rewards causally influence behavior as predicted by our reward learning account. 

Computational learning theory posits specific behavioral patterns that would 

characterize online behavior as an expression of reward learning. A seminal empirical insight 

is that when animals (e.g., rodents in a Skinner box) can select the timing of their instrumental 

responses (e.g., when and how often to press a lever), the latency of responding (the inverse of 

the response rate) is negatively related to the rate of accrued rewards28. That is, a lower reward 

rate produces longer response latencies. Reinforcement learning theory provides both a 

normative explanation and a mechanistic machinery for this regularity: the more reward one 

receives, the shorter the average latency between responses should be, because acting more 

slowly results in a longer delay to the next reward, and the cost of this delay—the opportunity 

cost of time—is directly related to the average reward rate29. As consequence, when animals 

have learned, through interaction with the environment, that the average reward rate is higher, 

actions should be made faster because further rewards would be foregone by slower and fewer 

responses.  

Although this RL theory was developed to explain animal behavior in laboratory tasks, 

on timescales of seconds and minutes, the theoretical relationship between the average reward 

rate and response latency is not tied to a specific timescale. Consequently, if social media taps 
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into basic learning mechanisms, social media behavior should exhibit the same relationship 

between response latency—the time between successive social media posts—and the (social) 

reward rate. In other words, we hypothesize that a type of real-life behavior, on timescales 

rarely, if ever, investigated in the laboratory, exhibits this key signature of reward learning. 

Finally, we confirm the causal influence of the social reward rate on posting response latencies 

with an online experiment, designed to mimic key aspects of social media platforms. 

  

Results 

Reward learning on social media 

We tested our hypothesis that online social behavior, in the form of posts, follows principles 

of reward learning theory in four independent social media datasets (see Methods) (total NObs 

= 1,046,857, NUsers = 4,168) with computational modeling. These datasets came from four 

distinct social media platforms, where people post pictures and, in response, receive social 

reward in the forms of “likes.” In Study 1 (NUsers = 2,039), we tested our hypothesis in a large 

dataset of Instagram posts30 (average number of posts per individual = 418, see Supplementary 

Table 1 for additional descriptive statistics). Instagram exemplifies modern social media, with 

over 1 billion registered users, and its format—focused primarily on simple postings and the 

receipt of likes as feedback—makes it a unique case study. However, because there are 

significant economic motives on Instagram and similar platforms31, an assessment of reward 

learning on Instagram could be limited to some extent by the possibility of fraudulent accounts 

and “fake likes,” among other strategic uses32. We therefore replicated and extended Study 1 

in Study 2 (NUsers = 2,127) with data from three different topic-focused social media sites 

(discussion forums focused on Men’s fashion, Women’s fashion, and Gardening, see 

Methods), where economic motives are less likely (average number of posts per individual = 
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91, see Supplementary Table 1 for descriptive statistics). Finally, we conducted an online 

experiment (Study 3, NParticipants = 176), designed to mimic key aspects of social media 

platforms, in which we manipulated the social reward rate to verify its causal impact on 

response latencies. 

Social rewards predict social media posting 

We conceptualized the act of posting on a social media platform (e.g., Instagram) as free-

operant behavior in a Skinner box with one response option (e.g., a single lever), where 

responses are followed by reward (i.e., likes). As outlined, a key prediction from learning 

theory for such situations, in which the agent can decide when to respond, is that the latency 

between responses should be affected by the average rate of rewards28,29. Before formally 

testing our computational hypothesis, we evaluated, in two complementary and model-

independent ways, whether social media behavior was sensitive to social rewards.  

First, we drew inspiration from classic work in animal learning theory, which 

established that response rates, an aggregate measure of response latency, typically follow a 

saturating positive (i.e., hyperbolic) function of reward rates28. This relationship, known as the 

quantitative law of effect28, is a signature of reward driven behavior (especially on interval 

schedules of reinforcement28). To directly test whether social media behavior exhibits this 

pattern, we compared how well a hyperbolic function explained the relationship between likes 

and response rates relative to a linear function (Supplementary Note 1). We found that the 

“quantitative law of effect” explained behavior better than a linear relationship in all four social 

media datasets (mean R2: Study 1  = 0.43, Study 2: = 0.37, see Supplementary Note 1), 

demonstrating that an aggregate measure of response latencies on social media exhibits a 

classic signature of reward learning28. 
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Second, we defined a high resolution measure of response latency (τPost) as the time 

between two successive social media posts (similar to the interval between responses in human 

laboratory tasks and in animal free-operant behavior, see Figure 1), and tested whether τPost 

was predicted by the history of likes using Granger causality analysis (see Methods). Granger 

causality is established if a variable (e.g., likes) improves on the prediction of a second variable 

(e.g., τPost) over and above earlier (lagged) values of the second variable in itself. To ascertain 

the selectivity of this method, we first applied it to simulated data from generative models 

where the ground truth was known (causality or no causality). We then fine-tuned the analysis 

parameters (the lag number, see Supplementary Note 2) to reliably detect Granger causality in 

data simulated from our reward learning model, which we introduce next, but not from models 

without learning (in which likes are unrelated to behavior, see Supplementary Note 2). 

Applying this optimized analysis method to the empirical data showed that likes Granger 

caused τPost in all four datasets (Study 1: Z̃ = 23.65, p < .0001; Study 2: Men’s Fashion: Z̃ = 

3.94, p < .0001; Women’s Fashion: Z̃ = 14.16, p < .0001; Gardening:  Z̃ = 6.78, p < .0001). 

Together, these results demonstrate that the history of social rewards (i.e., likes) influenced 

both the rate and the time distribution of social media posting. Such reward sensitivity is a 

minimal criterion for more formally testing the explanatory power of learning theory. 

Modeling the dynamics of social media behavior 

Having established that social media behavior is sensitive to reward, we next developed a 

generative model, based on RL theory of free-operant behavior in non-human animals29. The 

key principle of this theory is that agents should balance the effort costs of responding and the 

opportunity costs of passivity (i.e., the posting-related rewards one misses while not posting) 

to maximize the average net (i.e., gains minus losses) reward rate29. The consequence is that 

average response latencies should be shorter when the average reward rate is higher. This 

prediction holds both when the amount of reward is a direct function of the number of responses 
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(i.e., ratio schedules of reinforcement) and when rewards become available at specific time 

points (i.e., interval schedules of reinforcement).  

 Building directly on these principles, our 𝑅ത𝐿 model specifies how agents adjust the 

latency of their responses to maximize the average net reward rate 𝑅ത (see Methods and 

Supplementary Methods). Hence, the model provides a formal account of our hypothesis that 

behavior on social media conforms to basic principles of reward learning. Formally, the model 

conceptualizes social media use as a sequence of decisions regarding the latency between 

successive posts, τPost (Figure 1A)29, where the agent maximizes the reward rate by adaptively 

adjusting τPost after observing each accrued reward. Psychologically, τPost can be thought of as 

the accumulation of motivation towards a threshold for posting (in similarity to the boundary 

in evidence accumulation models of decision-making33). The model policy, or threshold, which 

determines τPost,, is dynamically adjusted based on the net reward prediction error, δ, the 

difference between the experienced reward and the reference level. The reference level is 

determined both by the individual’s effort cost sensitivity (e.g., the subjective cost of taking 

pictures and uploading) and the subjective estimate of the average net reward Rഥ29,34, which 

determines the opportunity cost of slow responding (Figure 1B-C). Both the effort cost and 

opportunity cost depend on the response latency, τPost. In other words, the optimal response 

latency balances these two costs to maximize the net reward δ (Figure 1D). The subjective 

estimate of Rഥ is updated using the same reward prediction error, thereby reflecting the 

integration of prediction errors across time29. In total, the model has three free parameters: 

learning rate, ɑ; initial policy, P; and effort cost sensitivity, C (see Methods). We verify with 

simulations that our RഥL model accurately reproduces standard patterns of animal behavior in 

Skinner boxes (Supplementary Methods and Supplementary Figure 1). This demonstrates the 

validity of the RഥL model as an account of instrumental reward learning. 
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Figure 1. Schematic illustration of the computational hypothesis. (A) The RഥL model 
describes how τPost, the latency to the next social media post (denoted by the “camera” icon), 
is shaped by social rewards. Each post is followed by social reward (denoted by the “heart” 
symbol), which varies in number. The model adjusts the response policy, or threshold, which 
determines τPost, to maximize the average net rate of reward. (B) The RഥL model posits an effort 
cost to responding (e.g., taking pictures, uploading), which decreases as a function of τPost. The 
effort cost term penalizes posting in quick succession, because high effort reduces the average 
reward rate. (C) The opportunity cost of time increases as a function of the average reward 
rate 𝑅ത. The gradient of red lines indicates increasing values of 𝑅ത (darker colors represent higher 
values), and thereby higher opportunity cost. (D) The optimal value of τPost, which maximizes 
the net reward δ, varies as function of 𝑅ത (darker colors represent higher values). The δ is used 
to update average reward rate Rഥ. Note that the optimum, indicated by the peak of the function, 
moves to shorter response latencies when Rഥ is higher because the opportunity cost of time 
increases with Rഥ. The horizontal line denotes 0. The figure assumes a constant effort cost C. 
(E) Simulated model predictions. The RഥL model predicts that τPost, the latency between 
successive social media posts, will be shorter with high compared to low average reward rate, 
Rഥ. The simulation involved N =1000 independent synthetic individuals. The prediction is 
presented as estimated mean +/- 99% CI from mixed-effects regression.  
 

We simulated the model (~250,000 data points from 1,000 simulated users, with 

random parameter values, see Supplementary Methods for details) to generate predictions for 

reward learning on social media. According to learning theory, τPost should be lower when the 

average reward rate is relatively higher. To verify this prediction in a simple manner, we rank-

transformed and standardized Rഥ for each synthetic user and then dichotomized the variable at 

0 to produce a qualitative “Low vs High Rഥ” predictor (nearly identical results are observed with 

other definitions, see Supplementary Table 7). To facilitate subsequent comparison with 

empirical analyses, we summarized the simulated data using mixed-effects models. These 

analyses revealed a clear effect of low vs. high Rഥ on τPost (β = 0.18, SE = 0.007, t = 31, p < 
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.0001), as expected. In other words, the model predicts (given the set of simulation parameters) 

that average response latencies should be ~18% longer when the average reward rate is low 

versus high (see Figure 1E).  

Our empirical analysis of the four social media platforms tested these model-based 

predictions with model estimation, statistical analyses, and generative model simulations. We 

optimized the parameters of the RഥL model for each individual user and quantitatively compared 

the explanatory value of the RഥL model to a null model without reward learning (see 

Supplementary Methods; model estimation and comparison procedure recovered the models 

with high probability, Supplementary Figure 2). The null model assumes that posting on social 

media reflects a stable behavioral tendency (i.e., average response latency, one free parameter), 

which is not affected by reward. The model comparison provides a direct, quantitative test of 

reward learning as an explanation for social media use. 

 

Study 1 

We first modeled online behavior in the Instagram dataset of Study 130. Model comparison 

showed that the RഥL model accounted better for the time distribution of responses (τPost) than 

the model without learning for ~70% of the users (mean individual-level Akaike Information 

Criterion weight (AICW) = .7, 99% CI [0.68, 0.81],  one-sample t-test relative to equal AICW 

for the two models: t(2038) = 23.1, p < .0001, see Figure 2A). The AICW expresses the relative 

likelihood of one model over another35. Equivalently, Bayesian random effects model 

comparison36 showed that the RഥL model was more common than the model without learning 

(exceedance probability [xp] = 1), and classified ~70% of individuals as better explained by 

the RഥL model.  

This conclusion was robust to the removal of individuals with especially short or long 

(e.g., outside the 20th and 90th deciles) average τPost, or with few (or many) posts (see 
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Supplementary Note 3), which confirms that the fit of the RഥL model was not driven by outliers. 

Similarly, splitting the dataset into four equally sized partitions showed that the RഥL model was 

the most common in all four partitions (mean AICW: 0.68 - 0.73, t-test against equal AICW: 

t(508) = 9.63-13.9, ps < .0001), which indicates that our conclusion is robust to sample 

idiosyncrasies and dataset size. Interestingly, we found that individuals with more Instagram 

followers exhibited non-linearly diminishing subjective value (utility) of likes, or in other 

words, derived less subjective value from each like (see Supplementary Note 4). This suggests 

that individuals with many followers might habituate to likes.  

 

Figure 2. Behavior on Instagram is explained by reward learning (Study 1) (A) Model 
comparison shows that the RഥL model explained behavior on Instagram (N = 2,039 independent 
individuals) better than a model without learning. The AICW expresses the relative likelihood 
for each model, and are presented as means +/- 99% CI. The horizontal line at 0.5 represents 
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the chance level of no difference between models. The distribution of AICW is displayed in 
Supplementary Figure 3. Source data are provided as a Source Data file. (B) The model-derived 
estimate of Rഥ, the average reward rate, predicted the latency between posts (N = 2,039 
independent individuals). As implicated by reward learning theory, the latency between posts 
was shorter with high compared to low Rഥ. Points indicate the corresponding estimates from 
synthetic data, based on ten generative simulation runs of the RഥL model (see text for details). 
The colored line denotes the average effect in the simulated data. Results are presented as 
means (fixed effects regression estimates) +/- 99% CI from mixed-effects regression.  (C-D) 
Model fit for an example individual. (C) The posting history of an individual user over 673 
days was well approximated by the RഥL model. The model policy (or posting threshold) denotes 
the average response latency predicted by the model at a given time point. The faded purple 
lines show 100 simulations of τPost from the estimated model policy, which illustrate the 
expected degree of variability given that policy, and how the empirical τPost falls within this 
range. The yellow line indicates the model estimate of the net reward rate, Rഥ. Note that a higher 
estimated Rഥ is associated with shorter response latencies (τPost). See Supplementary Figure 4 
for additional example individuals. Source data are provided as a Source Data file. (D) The 
distribution of τPost for the same individual. The faded purple line shows 100 simulations of 
τPost from the estimated model policy. Source data are provided as a Source Data file. 
 
 
 
 According to our theoretical framework, responses should be faster when the 

subjective reward rate is higher. Similar to how we derived model predictions (c.f., Figure 1D), 

we used the model-based estimate of Rഥ (at t-1) dichotomized into “Low vs High” to predict the 

empirical τPost (at t), using log-linear mixed models (see Methods; the same conclusions are 

reached using continuous measures and regression models with cluster-corrected standard 

errors, see Supplementary Note 8 & Supplementary Table 7). In support of the hypothesis that 

people learn to maximize social rewards, the latency between posts, τPost, was lower when Rഥ 

was relatively high (Instagram (NObs = 851,946, NUsers = 2,039): β = -0.18, SE = 0.003, t = -

54.59, p < .0001, see Figure 2B. Expressed in model comparison terms, the AICW for the 

regression model including Rഥ was 1). Thus, increasing the average subjective reward rate from 

low to high reduced average latency between posts by ~18%, corresponding to ~8 hours. Based 

on analysis with a continuous Rഥ term, this corresponds to a reduction of 0.34% (~5 minutes) in 

average posting latencies for each 1% increase in the subjective reward rate. Providing 

additional support for the logic of the RഥL model, the effect of Rഥ on posting latencies was 

stronger for individuals for whom the RഥL model provided a better fit (interaction Low vs High 
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Rഥ * AICW [centered at 0.5]:  β = -0.04, SE = 0.008, t = -5.5, p < .0001). To ascertain the unique 

effects of our variables of interest, we adjusted for R(t-1) (the number of likes received at post 

t-1), the specific post number, and the weekday of the preceding post in these analyses. We 

illustrate the relationship between τPost, Rഥ, and the model policy in Figure 2C-D, which displays 

the posting behavior of an example individual over a period of two years. Together, these 

findings strongly indicate that online behavior conforms to principles of reward learning. 

 

Study 1: Alternative models 

 To test the specificity of the RഥL model, we compared it with a set of plausible alternative 

models (see Supplementary Note 6). Specifically, we examined models (i) without effort cost 

(C) or net reward rate (𝑅തሻ parameters, (ii) where the effort cost was fixed, or increased (rather 

than decreased) with post latencies, (iii) without an instrumental response policy, and (iv) based 

on foraging theory. Each of these provided worse accounts of the data than the RഥL model (see 

Supplementary Note 6, and Supplementary Tables 3-6). 

 

Study 1: model simulations 

In addition to demonstrating a model’s superior fit to the data, strong support for a model 

depends on its ability to reproduce the effects of interest37. To confirm the model fitting results, 

we therefore generatively simulated the RഥL model (based on the median best fitting parameters, 

but independent of the empirical data) and used mixed-effects models to summarize the 

simulations38. Notably, the simulation makes very limited assumptions of how likes were 

generated (i.e., as random draws from a Poisson distribution, with identical parameters for all 

individuals, see Supplementary Methods for additional details). Nonetheless, we found that the 
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simple reward learning ሺRഥLሻ model reproduced the observed difference in response latency 

between high and low Rഥ (Figure 2B).  

 

Study 2 

To replicate and extend the results of Study 1, we collected data from three distinct social media 

sites (see Methods) which, in contrast to Instagram, focus on special interest topics (Men’s 

fashion, Women’s fashion, Gardening, respectively). Much activity on these social media sites 

is focused on textual exchange rather than images, but all three contain prolific “threads”—

collections of posts focused on a specific topic—with predominantly image-based content (e.g., 

“What are you wearing today?”, “Post pictures of your garden”), with many thousands of posts 

each. We limited our analyses to posts with user-generated images from such threads (see 

Methods and Supplementary Methods), but verify in the Supplementary Note 5 that the results 

are qualitatively identical when including text-based posts. 

 We again tested the hypothesis that social media behavior reflects social reward 

learning by estimating the same RഥL model as in Study 1. In all three datasets (190,721 data 

points from 2,127 individuals), regardless of the specific topic, model comparison favored the 

RഥL model over the model without learning (pooled mean AICW = 0.77, 99% CI [0.76, 0.79], t-

test against equal model likelihoods: t(2126) = 38.84, p < .0001, xp = 1, see Figure 3A-C). As 

in Study 1, we performed several robustness checks to verify this conclusion (see 

Supplementary Note 3). These findings converge with and generalize those of Study 1, 

providing platform-independent evidence that reward learning theory can help explain social 

media behavior. 
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Figure 3. Signatures of reward learning on three social media sites (Study 2). (A-C) Model 
comparison shows that the RഥL model explained behavior on the three social media sites (total 
N = 2,127 independent individuals. A: N = 543, B: N = 773, C: N = 813) better than a model 
without learning. The AICW expresses the relative likelihood for each model, and are presented 
as means +/- 99% CI. The horizontal line at 0.5 represents the chance level of no difference 
between models. The exceedance probability for the RഥL model was 1 in all three datasets. The 
distribution of AICW is displayed in Supplementary Figure 3. Source data are provided as a 
Source Data file.  (D-F) The model derived estimate of Rഥ, the average reward rate, predicted 
the latency between posts on each social media platform (D: N = 543, E: N = 773, F: N = 813 
independent individuals). In line with reward learning theory, the latency between posts was 
shorter with high compared to low Rഥ. The colored points indicate the corresponding estimates 
from simulated data, based on ten generative simulation runs of the RഥL model (see text for 
details). The colored lines show the average effect in the simulated data. Results are presented 
as means (fixed effects regression estimates) +/- 99% CI from mixed-effects regressions. 
 
 

 

As in Study 1, we used the model-based estimate of Rഥ to predict the empirical τPost, 

using mixed effects regression models (adjusting for the same covariates as in Study 1). As 

expected, a higher Rഥ predicted faster responding in all three datasets (see Figure 3D-F. Men’s 
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fashion (NObs = 36,139, NUsers = 541): β  = -0.08, SE = 0.016, t = -5.1, p < .0001. Women’s 

fashion (NObs = 36,434, NUsers = 773): β  = -0.16, SE = 0.02, t = -7.1, p < .0001. Gardening: 

(NObs = 118,148, NUsers = 813): β = -0.18, SE = 0.02, t = -12.09, p < .0001). Thus, in these 

respective datasets, latencies between posts were 8%, 16%, and 18% shorter when the average 

reward rate was high rather than low. This corresponds, based on analysis with a continuous Rഥ 

term, to a reduction of 0.18%, 0.41%, and 0.38% in average posting latencies for each 1% 

increase in the subjective reward rate. As in Study 1, the estimated effect of Rഥ on posting 

latencies was stronger for individuals for whom the RഥL model provided a better fit (see 

Supplementary Note 7). Thus, regardless of platform topic, social media behavior conforms to 

model-based principles of reward maximization through RL. 

We again conducted generative model simulations of the RഥL model, based on the 

median estimated parameters, to test whether the model reproduced the effect of average 

reward rates on posting latencies. Corroborating Study 1, these simulations showed that the RഥL 

model accurately reproduced the effect of Rഥ observed in the data (Figure 3D-F) (but note that 

the absolute level of τPost is slightly overestimated in the Gardening dataset). Together with 

Study 1, these results confirm that basic reward learning theory provides a powerful tool for 

predicting and explaining the dynamics of social media use, independent of topic. 

 

Study 2: Social comparison in social reward learning 

The preceding analyses showed that people dynamically adjust their social media behavior in 

response to their own social rewards, as predicted by reward learning theory—a theory 

originally developed to test the effects of nonsocial rewards (e.g., food) in solitary contexts. 

However, given the intrinsically social context of social media use, we speculated that reward 

learning online could be modulated by the rewards others receive. In the Supplementary Note 
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9 we provide preliminary support for the hypothesis that reward learning, at least on the social 

media platforms we analyzed in Study 2, may be modulated by social comparison. 

 

Individual differences in reward learning on social media  

Having established that reward learning can help explain social media behavior, we next asked 

whether individuals differ in the ways they learn from rewards on social media. To address this 

issue, we used the parameter estimates of the basic RഥL model as a compact but rich description 

of the mechanisms underlying behavior—a kind of computational phenotype (which is 

behavioral in nature and makes no direct reference to the underlying genotype)39. Individual 

differences in these parameters can thus be viewed as differences in computational 

mechanisms39 that are interpretable across domains. For example, individual differences in 

learning rates have previously been linked to both genetic40 and developmental differences41 

between individuals, while individual differences in effort cost sensitivity have been related to 

the dopaminergic system42.  

 More specifically, we used the three parameters of the original RഥL model estimated 

for each individual from Study 1 & 2 (total NUsers = 4,168), as input for k-means clustering, an 

unsupervised, data-driven method for finding sub-groups in multidimensional data. 

Quantitative assessment, using multiple standard criteria, showed that four clusters gave the 

best sub-group solution (see Figure 4A and Methods). In Supplementary Note 10, we report 

additional robustness analyses, which show that this cluster solution was stable. These clusters 

comprised between 41% (1,739 individuals) to 7% (299 individuals) of the total dataset. 

Importantly, although the four datasets varied in mean τPost (as reflected in the P parameter), 

the cluster assignment was not strongly explained by dataset (Cramér’s V = 0.3; Cramér’s V is 

a measure of the association between two nominal variables, where 1 denotes perfect 
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association). This indicates that clusters captured individual differences in computational 

learning mechanisms, rather than idiosyncrasies of social media sites.  

 

 

Figure 4. Computational phenotypes in reward learning on social media. (A) Cluster 
analysis (n = 4,168 independent individuals from Study 1 & 2) of the estimated RഥL model 
parameters indicated that there were four distinct individual difference profiles in reward 
learning on social media. For illustration, the cluster assignments are plotted on the two first 
principal components (PC). Source data are provided as a Source Data file. (B) Profile of 
median RഥL model parameter values (standardized) for each cluster; ɑ = learning rate, P = initial 
response policy, C = effort cost sensitivity. Source data are provided as a Source Data file. 
 

 

 Figure 4B illustrates the four putative computational phenotypes. For example, 

individuals in cluster 1 are characterized by a relatively low learning rate (ɑ). Such individuals 

are especially insensitive to social rewards in their behavior (and naturally, the RഥL learning 

model provided the worst fit to these individuals relative to the model without learning: mean 

AICW = 0.11, vs AICW ~ 0.77 in the other three clusters). By comparison, individuals in cluster 

2 are characterized by low effort cost and average learning rate, whereas cluster 4 exhibits the 
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opposite relationship between learning rate and effort cost (and cluster 3 an intermediate 

profile). Individuals in both clusters 2 and 4 therefore readily post in response to social rewards, 

although the underlying mechanisms differ. In summary, the computational phenotyping 

indicates that there are important individual differences in the mechanisms underlying social 

media behavior.  

 

Study 3 

Finally, to provide direct evidence that the social reward rate affects posting latencies, we 

conducted an online experiment in which we experimentally manipulated social rewards and 

observed posting response latencies. The experiment was designed to capture key aspects of 

social media, such as Instagram. Participants (n = 176) could post “memes”—typically, an 

amusing image paired with a phrase that is popular on real social media—as often and 

whenever they wanted during a 25 minute online session (total number of posts = 2,206, see 

Supplementary Methods for details). Participants received feedback on their posts in the form 

of likes (0-19) from other ostensible online participants (“users”, see Supplementary Figure 5 

for an overview of the experiment). Participants themselves could also indicate “likes” for 

memes posted by other users. To test whether a higher social reward rate causes shorter 

response latencies in posting, we increased or decreased the average number of likes 

participants received between the first and second halves of the session (low reward: 0-9 

likes/post, high reward: 10-19 likes/post, drawn from a uniform distribution, with direction of 

change counter-balanced across subjects). As expected, mixed effects regression (see Methods) 

showed that the average post latency was longer when the social reward rate was lower (0-9 

likes/post) relative to higher (10-19 likes/post): β = 0.109, SE = 0.044, z = 2.47, p = .013 (see 

Figure 5), corresponding to a 10.9% difference. Notably, participants who reported more 

followers on Instagram exhibited weaker effects of likes on their behavior (see Supplementary 
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Note 11). This finding parallel how individuals with more Instagram followers in Study 1 

exhibited more diminished marginal utility of likes (see “Study 1” above and Supplementary 

Note 4). These results further support the validity of our experiment in assessing the 

psychology of real-world social media use. We report additional analyses and robustness 

checks in Supplementary Note 11. 

To directly relate the experimental results of Study 3 to our model-based analyses of 

online behavior in Studies 1 and 2, we used the RഥL model to generate subjective Rഥ time series 

for the subset of participants with a sufficient number of responses (see Supplementary Note 

11 for details), and used these (instead of reward condition) to predict response latencies. In 

accordance with the model fits to the real social media data (Study 1-2), the average response 

latency was longer when the subjective reward rate was low, relative to high (mixed effects 

regression, n = 156: β = 0.28, SE = 0.045, z = 6.24, p < .0001). These experimental results 

demonstrate that social rewards causally influence response latencies, in support of our 

conclusion that social reward rates shape real social media behavior.  

 

Figure 5. Experimental manipulation of social reward rates (Study 3). The estimated effect 
of social reward rate condition on posting latencies in the online experiment (n =  176 
independent individuals, see Supplementary Figure 5 for a design overview). Results are 
presented as means (fixed effects regression estimates) ±1 SE of the regression estimates from 
from mixed-effects regression.  
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Discussion 

In an age where our social interactions are increasingly conducted online, we asked what drives 

people to engage in social media behavior. Across two studies of four large online datasets, we 

found that social media behavior exhibited a signature pattern of reward learning, such that 

computational models inspired by RL theory, originally developed to explain the behavior of 

non-human animals, could quantitatively account for online behavior. This account was further 

supported by experimental data, in which manipulated reward rates affected the latency of 

social media posted in line with this reward learning model. Together, these results provide an 

important advance in our understanding of people’s use of online social media, an increasingly 

pervasive and profoundly consequential arena for human interaction in the 21st century. 

  Our results provide clear evidence that behavior on social media indeed follows 

principles of reward maximization, and thereby give credence to the popular portrayal of social 

media engagement as a Skinner Box for the modern human. These observations, along with 

their formal modeling, have broad implications for understanding and predicting multiple 

aspects of online behavior, including dating (e.g., learning from outcomes on dating apps), 

social norms, and prejudice43.  For example, it has been argued that online expressions of moral 

outrage, and in turn polarization44, are fueled by social feedback, such as likes, in accordance 

with the principles of reward learning45. Our findings and theoretical framework provides a 

plausible mechanistic basis for such processes, and thereby further expand the scope of simple 

reinforcement learning mechanisms for explaining seemingly complex social behaviors, such 

as social exclusion38, behavioral traditions46, and socio-cultural learning47. 

 Our computational model of social media behavior draws from RL theory originally 

intended to explain how non-human animals select the vigor of their responses by encoding the 

average net rate of rewards29. Apart from providing a normative explanation for key behavioral 

regularities (e.g., the “matching law”28), an important aspect of this theory is the idea that Rഥ, 
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the average rate of reward, is encoded by the tonic, average level of dopamine29. This idea has 

received some support in humans, where pharmacologically increasing the tonic level of 

dopamine, which according to the theory corresponds to a higher subjective reward rate, 

decreased average response latencies48. Although our behavioral findings cannot speak to the 

neurobiological basis of reward learning on social media, the link we establish between online 

response latencies and the average social reward rate warrant further exploration of the 

underlying brain mechanisms14.   

 More generally, our results indicate that dopamine inspired RL theory may help to 

explain real-life individual behavior on timescales that are orders of magnitude larger than 

typically investigated in the lab. In turn, this insight might contribute to a more mechanistic 

perspective on both healthy and maladaptive (e.g. addictive4,5) aspects of social media use, with 

the potential to inspire novel, theoretically grounded design solutions or interventions. Such 

interventions could be individualized by applying computational phenotyping to an 

individual’s existing social media record (e.g., by increasing the effort cost of posting for 

individuals characterized by low C), thus providing ideographic approaches developed from 

theoretical models tested on large-scale data. Although our data do not speak directly to 

whether intense social media use is maladaptive or addictive in nature, it suggests a new 

approach for asking such critical questions.  

 Naturally, there are many possible reasons for posting on social media in addition to 

reward seeking, ranging from self-expression to relational development6. While our research 

focused on how social rewards explain behavior, it does not preclude the potentially important 

roles of other motivations. Incorporating relational considerations in the RഥL model, such as 

reciprocity or network proximity, represents an important goal for future research. 

Nevertheless, the learning model tested here explained behavior well, suggesting that reward 

learning is a major factor in social media engagement. 
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 Our results raise several new questions regarding the role of reward in social media 

behavior. First, while our analysis of anonymous, real-world social media data precluded 

demographic characterization of users, it is possible that certain demographic factors, such as 

age, may moderate the effect of reward learning in online behavior. For example, adolescents 

tend to be more sensitive than adults to social rewards and punishments49, and thus our results 

may be particularly informative to questions of adolescent social media behavior. An 

examination of the developmental trajectories of the computational phenotypes in social reward 

learning identified here, and their relations to individual differences in psychological traits, 

could further illuminate age effects in online behavior. Furthermore, while our research focused 

on the effect of social rewards (i.e., likes) on posting behavior, negative feedback, which is 

rampant on many social media platforms (e.g., down votes), is also likely to drive learning. 

The RL framework we proposed here may also be extended to include such social punishments. 

For example, treating social punishments as reinforcement with negative utility would, in 

principle, allow direct application of the RഥL model in its current form, but it is possible that 

additional motivational factors, such as negative reciprocity, also play an important role in 

aversely motivated social media behavior. In addition, as we focused on the timing, rather than 

the content (e.g., of images or comments), of social media posts, an important future goal will 

be to characterize how people learn to produce actions (e.g., posting content, comments on 

others’ posts) that maximize reward. Our RഥL model could be modified to include action 

selection as a part of the response policy29. Finally, our analysis in Study 2 suggests that social 

comparison may contribute to reward learning on social media by providing a social reference 

level for the number of likes required to elicit a positive reward prediction error. Although this 

result comports with prior research examining social comparison on social media3,23, as well 

as neural reward processing19, the correlational nature of the big data used here necessitates 

caution, as other explanations cannot be ruled out. These findings present an opportunity for 
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future experimental research to establish the causal nature of social comparison and to explore 

its boundary conditions.  

 In conclusion, our findings reveal that basic reward learning mechanisms contribute 

to human behavior on social media. Understanding modern online behavior as an expression 

of social reward learning mechanisms offers a new window into the psychological and 

computational mechanisms that drive people to use social media while illuminating the link 

between basic, cross-species mechanisms and uniquely human modes of social interaction. 

  

Methods 

Social media datasets  

Study 1 was based on data from a previously published study (see30 for further information), 

in which data collection was based on a random sample of individuals who partook in a specific 

photography contest on Instagram in 2014. We find no evidence that contest participation was 

related to posting behavior (see Supplementary Note 12). The dataset was fully anonymized. 

To allow for analyses of learning, we excluded all individuals with less than 10 posts50. For 

Study 1, the final dataset consisted of 851,946 posts from 2,039 individuals. For Study 2, we 

obtained three datasets from three different topic-focused (Men’s fashion: styleforum.net, 

Women’s fashion: forum.purseblog.com, Gardening: garden.org, see Supplementary Methods 

for details) social media discussion forums using web scraping techniques51 on publicly 

accessible data. The datasets were fully anonymized, and only included the time stamps and 

likes associated with posts in prolific threads focused on user-generated images (e.g., pictures 

of one’s clothing, see Supplementary Methods). For our analyses, we focused on posts with 

user-generated images, and, in analogy to Study 1, removed all users with fewer than ten image 

posts. The Study 2 dataset consisted of 190,721 posts from 2,127 individuals (Men’s fashion: 

N = 543, Women’s fashion: N = 773, Gardening: N = 813). This research was conducted in 
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compliance with the US Office for Human Research Protections regulations (45 CFR 46.101 

(b)). 

 

Experiment 

 The experiment was conducted on Amazon Mechanical Turk, and approved by the ethical 

review board of the University of Amsterdam, The Netherlands. See the Supplementary 

Methods for additional information. 

 

Description of the 𝐑ഥ𝐋 model 

The RഥL model is a policy gradient version of R-learning52. Rather than storing action values 

for options and using these as a basis for decision-making, the RഥL model directly updates a 

parametrized response policy (the mean parameter of an exponential distribution). This is 

beneficial for learning problems with continuous action spaces (e.g., the latency between 

responses)53. In close similarity to standard RL models for discrete action spaces, the RഥL model 

incrementally learns to adjust its actions (i.e., τPost) from prediction errors. In contrast to 

standard RL approaches in psychology, the prediction errors are used to directly adjust the 

response policy to maximize the undiscounted net rate of reward rather than to update action 

values. 

 For each post, the RഥL model selects τPost as a draw from an exponential distribution, 

where the mean (i.e., the response policy or threshold) is dynamic:  

𝜏௉௢௦௧೟ ~  ൌ 𝑒୔୭୪୧ୡ୷
೟ିఈ∗ோത೟      (1) 

The initial response policy (i.e. for t = 1) was estimated as a free parameter (0 ≤ P ≤ ∞). The 

subtraction term in Equation (1) implements the momentous effect of the average reward rate 

(e.g., changes in motivational state), 𝑅ത௧, on the response rate, which is independent of 
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learning29. This term, which can be thought of as “Pavlovian” (since it is independent of 

instrumental behavior), slightly amplifies the effect of the average reward rate on τPost. Model 

comparison and simulation showed that this term has a small but significant contribution to 

model fit, but does not affect qualitative predictions. 

 The response policy, which determines τPost, is adjusted based on the prediction error, 

δ, the difference between the experienced reward (Rt) and the reference level: 

𝛿௧ ൌ  𝑅௧ െ ஼

ఛು೚ೞ೟೟
െ 𝑅ത௧ ∗ 𝜏௉௢௦௧೟      (2) 

The reference level explicitly takes into account both the effort cost of fast responding and the 

opportunity cost of slow responding (Figure 1B-C), which is determined by the subjective 

estimate of the average net reward 𝑅ത29,34. In our application of the model, C (0 ≤ C ≤ ∞) is a 

user-specific parameter that determines the subjective effort cost of posting (e.g., taking 

pictures, uploading). This parameter penalizes posting in quick succession (e.g., posting three 

times in one day is more costly than posting three times in three days; we evaluate different 

effort cost formulations in the Supplementary Note 5). If actions have no intrinsic cost, the 

optimal policy would be to respond as quickly as possible29,54. The last term in Equation (2) 

characterizes the opportunity cost of slow responding, which increases with 𝑅ത (Figure 1C).  

 The RഥL model seeks to maximize reward by dynamically updating the response policy 

by the “gradient”, or slope, of reward. In short, the gradient indicates the direction and distance 

to the hypothetical maximum net reward that could have been accrued at time t. To compute 

the gradient, the model tracks the sequential difference between responses (i.e., draws from the 

policy, which can be thought of as exploration), and combines this quantity with the net reward 

prediction error (Equation 2).   

∆𝜏௉௢௦௧೟ ൌ  𝜏௉௢௦௧೟ െ 𝜏௉௢௦௧೟షభ        (3) 

Policy௧ାଵ ൌ Policy௧ ൅ 𝛼 ∗ ∆𝜏௉௢௦௧೟ ∗ 𝛿
௧    (4) 
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Thereby, the model can learn the instrumental value of slower vs. faster responses. For 

example, if ∆𝜏௉௢௦௧೟is positive, which would be the case if the response latency at t was longer 

than at t-1, but 𝛿௧ negative, which indicates that the net reward was lower than on average, the 

gradient (Equation 4) is negative. This results in a reduced response policy (the degree of 

adjustment depends on the magnitude of both ∆𝜏௉௢௦௧೟ and 𝛿௧), and in turn shorter response 

latencies. In contrast, if both ∆𝜏௉௢௦௧೟and 𝛿௧ are either positive or negative, the response policy 

will increase, which leads to longer response latencies. The average reward rate is updated 

using the same reward prediction error as the policy, as it directly reflects net reward value52: 

𝑅ത௧ାଵ ൌ 𝑅ത௧ ൅ 𝛼 ∗ 𝛿௧      (5) 

However, regardless of whether slower or faster responses are rewarded, an increase in the 

average reward rate (Equation 5) results in a higher opportunity cost of time (Equation 2), 

which in turn results in shorter response latencies (Equation 2, and Figure 1D).  

 If either ∆𝜏௉௢௦௧೟ or 𝛿௧ = 0, the model can theoretically be trapped in local reward 

minima. However, the stochastic policy (Equation 1) ensures that ∆𝜏௉௢௦௧೟is different from 0 

with exceedingly high probability, which promotes continuous search by sacrificing 

convergence if the step size parameter is fixed (as the model policy will continuously change). 

For simplicity, the same step size parameter ɑ (0 ≤ ɑ ≤ 1) was used for all update terms 

(Equations 1 & 4-5). Inclusion of separate step size parameters for the different update 

equations did not reliably improve (parameter number penalized) model fit. Additional model 

information and estimation methods are detailed in the Supplementary Methods. 

  

Statistical analysis 

All model estimation, simulations, and statistical analyses were conducted using R. All reported 

p-values are two-tailed. Granger causality analysis was applied to first differenced data using 

the plm package for panel-data analysis (see Supplementary Methods for details)55. Mixed 
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effects modeling was conducted with the lme456 and glmmTMB57 packages. All log-linear 

mixed effects models included a random intercept for each user. In the statistical analyses, the 

dependent variable τPost was log transformed (as the time between events follows an 

exponential distribution) to improve linearity. All predictors were standardized within 

individual (i.e., centering within cluster) to produce individual-level estimates58. Degrees of 

freedom, test statistics, and p-values were derived from Satterthwaite approximations in the 

lmerTest package59. The key statistical analyses were in addition repeated using log-linear 

regression models with cluster-corrected standard errors to ensure robustness (see 

Supplementary Table 7). Prior to k-means clustering, the RഥL model parameter estimates were 

log-transformed (to improve linearity) and standardized. The optimal number of clusters was 

determined using the NbClst package60.  

 

Acknowledgments. We thank Andreas Olsson for helpful comments on an earlier version of 

the manuscript, and Lucas Molleman for valuable suggestions concerning the experimental 

design. Work on this article was supported by grant from the Netherlands Organization for 

Scientific Research to DMA (VICI 016.185.058). PNT acknowledges funding support from 

the Swiss National Science Foundation (100019_176016). 

Author contributions. B.L conceived of the study. B.L developed the study in discussion with 

M.B, P.T, and D.A. B.L designed and implemented the computational models, and conducted 

all analyses. M.B and A.C collected and processed the data for Study 2. B.L, D.S and D.A 

designed the behavioral experiment. D.S coded the behavioral experiment and collected data. 

B.L and D.A wrote the manuscript. B.L, P.T and D.A edited the manuscript and contributed to 

the interpretation of the results.  

 

References 



30 
 

1. Chaffey, D. Global social media research summary 2019. (2019). Available at: 
https://www.smartinsights.com/social-media-marketing/social-media-strategy/new-
global-social-media-research/. (Accessed: 28th June 2019) 

2. Hayes, R. A., Carr, C. T. & Wohn, D. Y. One Click, Many Meanings: Interpreting 
Paralinguistic Digital Affordances in Social Media. J. Broadcast. Electron. Media 60, 
171–187 (2016). 

3. Rosenthal-von der Pütten, A. M. et al. “Likes” as social rewards: Their role in online 
social comparison and decisions to like other People’s selfies. Comput. Human Behav. 
92, 76–86 (2019). 

4. Kuss, D. & Griffiths, M. Social Networking Sites and Addiction: Ten Lessons 
Learned. Int. J. Environ. Res. Public Health 14, 311 (2017). 

5. Andreassen, C. S. Online Social Network Site Addiction: A Comprehensive Review. 
Curr. Addict. Reports 2, 175–184 (2015). 

6. Lin, K.-Y. & Lu, H.-P. Why people use social networking sites: An empirical study 
integrating network externalities and motivation theory. Comput. Human Behav. 27, 
1152–1161 (2011). 

7. Sutton, R. S. & Barto, A. G. Reinforcement learning : an introduction. (MIT Press, 
1998). 

8. Sherman, L. E., Payton, A. A., Hernandez, L. M., Greenfield, P. M. & Dapretto, M. 
The Power of the Like in Adolescence. Psychol. Sci. 27, 1027–1035 (2016). 

9. Sherman, L. E., Hernandez, L. M., Greenfield, P. M. & Dapretto, M. What the brain 
‘Likes’: neural correlates of providing feedback on social media. Soc. Cogn. Affect. 
Neurosci. 13, 699–707 (2018). 

10. Bhanji, J. & Delgado, M. The social brain and reward: social information processing in 
the human striatum. Wiley Interdiscip. Rev.  … (2014). 

11. Gu, R. et al. Love is analogous to money in human brain: coordinate-based and 
functional connectivity meta-analyses of social and monetary reward anticipation. 
Neurosci. Biobehav. Rev. (2019). doi:10.1016/J.NEUBIOREV.2019.02.017 

12. Ruff, C. C. & Fehr, E. The neurobiology of rewards and values in social decision 
making. Nat. Rev. Neurosci. 15, 549–62 (2014). 

13. Falk, E. & Scholz, C. Persuasion, Influence, and Value: Perspectives from 
Communication and Social Neuroscience. Annu. Rev. Psychol. 69, 329–356 (2018). 

14. Meshi, D., Tamir, D. I. & Heekeren, H. R. The Emerging Neuroscience of Social 
Media. Trends Cogn. Sci. 19, 771–782 (2015). 

15. Zell, A. L. & Moeller, L. Are you happy for me … on Facebook? The potential 
importance of “likes” and comments. Comput. Human Behav. 78, 26–33 (2018). 

16. Wohn, D. Y., Carr, C. T. & Hayes, R. A. How Affective Is a “Like”?: The Effect of 
Paralinguistic Digital Affordances on Perceived Social Support. Cyberpsychology, 
Behav. Soc. Netw. 19, 562–566 (2016). 

17. Grinberg, N., Dow, P. A., Adamic, L. A. & Naaman, M. Changes in Engagement 
Before and After Posting to Facebook. in Proceedings of the 2016 CHI Conference on 
Human Factors in Computing Systems - CHI ’16 564–574 (ACM Press, 2016). 
doi:10.1145/2858036.2858501 

18. Eckles, D., Kizilcec, R. F. & Bakshy, E. Estimating peer effects in networks with peer 
encouragement designs. Proc. Natl. Acad. Sci. U. S. A. 113, 7316–22 (2016). 

19. Fliessbach, K. et al. Social Comparison Affects Reward-Related Brain Activity in the 
Human Ventral Striatum. Science (80-. ). 318, 1305–1308 (2007). 

20. Festinger, L. A Theory of Social Comparison Processes. Hum. Relations 7, 117–140 
(1954). 

21. Tobler, P. N., Fiorillo, C. D. & Schultz, W. Adaptive Coding of Reward Value by 



31 
 

Dopamine Neurons. Science (80-. ). 307, (2005). 
22. Grinberg, N., Kalyanaraman, S., Adamic, L. A. & Naaman, M. Understanding 

Feedback Expectations on Facebook. in Proceedings of the 2017 ACM Conference on 
Computer Supported Cooperative Work and Social Computing - CSCW ’17 726–739 
(ACM Press, 2017). doi:10.1145/2998181.2998320 

23. Carr, C. T., Hayes, R. A. & Sumner, E. M. Predicting a Threshold of Perceived 
Facebook Post Success via Likes and Reactions: A Test of Explanatory Mechanisms. 
Commun. Res. Reports 35, 141–151 (2018). 

24. Theocharous, G., Research, A., Thomas, P. S. & Ghavamzadeh, M. Personalized Ad 
Recommendation Systems for Life-Time Value Optimization with Guarantees. in 
Proceedings of the Twenty-Fourth International Joint Conference on Artificial 
Intelligence (2015). 

25. Cheng, J., Danescu-Niculescu-Mizil, C. & Leskovec, J. How Community Feedback 
Shapes User Behavior. (2014). 

26. Das, S. & Lavoie, A. The Effects of Feedback on Human Behavior in Social Media: 
An Inverse Reinforcement Learning Model. in Proceedings of the 13th International 
Con- ference on Autonomous Agents and Multiagent Systems (2014). 

27. Hackel, L. M. & Amodio, D. M. Computational neuroscience approaches to social 
cognition. Curr. Opin. Psychol. 24, 92–97 (2018). 

28. Herrnstein, R. J. On the law of effect. J. Exp. Anal. Behav. 13, 243–66 (1970). 
29. Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the 

control of response vigor. Psychopharmacology (Berl). 191, 507–520 (2007). 
30. Ferrara, E., Interdonato, R. & Tagarelli, A. Online popularity and topical interests 

through the lens of instagram. in Proceedings of the 25th ACM conference on 
Hypertext and social media - HT ’14 24–34 (ACM Press, 2014). 
doi:10.1145/2631775.2631808 

31. Gerlitz, C. & Helmond, A. The like economy: Social buttons and the data-intensive 
web. New Media Soc. 15, 1348–1365 (2013). 

32. Sen, I. et al. Worth its Weight in Likes: Towards Detecting Fake Likes on Instagram. 
(2018). doi:10.1145/3201064.3201105 

33. Roberts, I. D. & Hutcherson, C. A. Affect and Decision Making: Insights and 
Predictions from Computational Models. Trends Cogn. Sci. 23, 602–614 (2019). 

34. Niv, Y., Joel, D. & Dayan, P. A normative perspective on motivation. Trends Cogn. 
Sci. 10, 375–81 (2006). 

35. Wagenmakers, E.-J. & Farrell, S. AIC model selection using Akaike weights. Psychon. 
Bull. Rev. 11, 192–6 (2004). 

36. Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J. & Friston, K. J. Bayesian 
model selection for group studies. Neuroimage 46, 1004–1017 (2009). 

37. Palminteri, S., Wyart, V. & Koechlin, E. The Importance of Falsification in 
Computational Cognitive Modeling. Trends Cogn. Sci. 21, 425–433 (2017). 

38. Lindström, B. & Tobler, P. N. Incidental ostracism emerges from simple learning 
mechanisms. Nat. Hum. Behav. (2018). 

39. Patzelt, E. H., Hartley, C. A. & Gershman, S. J. Computational Phenotyping: Using 
Models to Understand Individual Differences in Personality, Development, and Mental 
Illness. Personal. Neurosci. 1, e18 (2018). 

40. Frank, M. J., Moustafa, A. a, Haughey, H. M., Curran, T. & Hutchison, K. E. Genetic 
triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proc. 
Natl. Acad. Sci. U. S. A. 104, 16311–6 (2007). 

41. van den Bos, W., Cohen, M. X., Kahnt, T. & Crone, E. A. Striatum-medial prefrontal 
cortex connectivity predicts developmental changes in reinforcement learning. Cereb. 



32 
 

Cortex 22, 1247–55 (2012). 
42. Cools, R. The costs and benefits of brain dopamine for cognitive control. Wiley 

Interdiscip. Rev. Cogn. Sci. 7, 317–329 (2016). 
43. Amodio, D. M. Social Cognition 2.0: An Interactive Memory Systems Account. 

Trends Cogn. Sci. 23, 21–33 (2019). 
44. Brady, W. J., Wills, J. A., Jost, J. T., Tucker, J. A. & Bavel, J. J. Van. Emotion shapes 

the diffusion of moralized content in social networks. Proc. Natl. Acad. Sci. 114, 
7313–7318 (2017). 

45. Crockett, M. J. Moral outrage in the digital age. Nat. Hum. Behav. (2017). 
doi:10.1038/s41562-017-0213-3 

46. Lindström, B. & Olsson, A. Mechanisms of social avoidance learning can explain the 
emergence of adaptive and arbitrary behavioral traditions in humans. J. Exp. Psychol. 
Gen. 144, (2015). 

47. Olsson, A., Knapska, E. & Lindström, B. The neural and computational systems of 
social learning. Nat. Rev. Neurosci. 1–16 (2020). doi:10.1038/s41583-020-0276-4 

48. Beierholm, U. et al. Dopamine modulates reward-related vigor. 
Neuropsychopharmacology 38, 1495–503 (2013). 

49. Crone, E. A. & Konijn, E. A. Media use and brain development during adolescence. 
Nat. Commun. 9, 588 (2018). 

50. Schulz, E. et al. Structured, uncertainty-driven exploration in real-world consumer 
choice. Proc. Natl. Acad. Sci. U. S. A. 201821028 (2019). 
doi:10.1073/pnas.1821028116 

51. Landers, R. N., Brusso, R. C., Cavanaugh, K. J. & Collmus, A. B. A primer on theory-
driven web scraping: Automatic extraction of big data from the Internet for use in 
psychological research. Psychol. Methods 21, 475–492 (2016). 

52. Constantino, S. M. & Daw, N. D. Learning the opportunity cost of time in a patch-
foraging task. Cogn. Affect. Behav. Neurosci. 15, 837–853 (2015). 

53. Sutton, R. S., Mcallester, D., Singh, S. & Mansour, Y. Policy Gradient Methods for 
Reinforcement Learning with Function Approximation. in Advances in neural 
information processing systems 12 (2000). 

54. Niv, Y. Cost, Benefit, Tonic, Phasic What Do Response Rates Tell Us about 
Dopamine and Motivation? ANNALS OF THE NEW YORK ACADEMY OF 
SCIENCES. Ann. N.Y. Acad. Sci 1104, 357–376 (2007). 

55. Croissant, Y. & Millo, G. Panel Data Econometrics in R : The plm Package. J. Stat. 
Softw. 27, 1–43 (2008). 

56. Bates, D. & Sarkar, D. lme4: Linear mixed-effects models using S4 classes. (2007). 
57. glmmTMB citation info. Available at: https://cran.r-

project.org/web/packages/glmmTMB/citation.html. (Accessed: 21st February 2020) 
58. Enders, C. K. & Tofighi, D. Centering predictor variables in cross-sectional multilevel 

models: A new look at an old issue. Psychol. Methods 12, 121–138 (2007). 
59. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in 

Linear Mixed Effects Models. J. Stat. Softw. 82, 1–26 (2017). 
60. Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust : An R Package for 

Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 61, 1–36 
(2014). 

 


