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A computational reward learning account of social
media engagement
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David M. Amodio1,5

Social media has become a modern arena for human life, with billions of daily users world-

wide. The intense popularity of social media is often attributed to a psychological need for

social rewards (likes), portraying the online world as a Skinner Box for the modern human.

Yet despite such portrayals, empirical evidence for social media engagement as reward-

based behavior remains scant. Here, we apply a computational approach to directly test

whether reward learning mechanisms contribute to social media behavior. We analyze over

one million posts from over 4000 individuals on multiple social media platforms, using

computational models based on reinforcement learning theory. Our results consistently show

that human behavior on social media conforms qualitatively and quantitatively to the prin-

ciples of reward learning. Specifically, social media users spaced their posts to maximize the

average rate of accrued social rewards, in a manner subject to both the effort cost of posting

and the opportunity cost of inaction. Results further reveal meaningful individual difference

profiles in social reward learning on social media. Finally, an online experiment (n= 176),

mimicking key aspects of social media, verifies that social rewards causally influence behavior

as posited by our computational account. Together, these findings support a reward learning

account of social media engagement and offer new insights into this emergent mode of

modern human behavior.
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What drives people to engage, sometimes obsessively,
with others on social media? In 2019, more than four
billion people spent1 several hours per day, on average,

on platforms such as Instagram, Facebook, Twitter, and other
more specialized forums. This pattern of social media engage-
ment has been likened to an addiction, in which people are driven
to pursue positive online social feedback2,3 to the detriment of
direct social interaction and even basic needs like eating
and sleeping4,5.

Although a variety of motives might lead people to use social
media6, the popular portrayal of social media engagement as a
Skinner Box for the modern human suggests it represents a form
of reinforcement learning (RL)7 driven by social rewards. Yet
despite this common portrayal, empirical evidence for social
media engagement as reward-based behavior has been elusive. In
the present research, we developed and applied a computational
approach to large scale online datasets of social media use to
directly test whether, and how, reward learning mechanisms
contribute to social media behavior. In doing so, we sought to
provide new insights into this emergent mode of human inter-
action while testing a learning theory model of real-life human
social behavior on an unprecedented scale.

In online social media platforms, feedback on one’s behavior
often comes in the form of a “like”—a signal of approval from
another user regarding one’s post2—which is assumed to function
as a social reward. Indeed, several lines of research support the
idea that “likes” engage similar motivational mechanisms as
other, more basic, types of rewards such as food or money. In
humans, brain imaging studies have consistently shown that
likes8,9, and other social rewards, are processed by neural and
computational mechanisms closely overlapping with those pro-
cessing non-social rewards10–14. Although neuroscientific studies
are largely constrained to the laboratory, such findings suggest
that social media use might reflect the process of reward max-
imization, similar to what is observed across species in response
to non-social rewards.

Reward learning processes on social media platforms should
also be evident in behavior. Indeed, the receipt of likes has
behavioral consequences consistent with reward learning. For
example, the number of likes received for a post predicts satis-
faction with that post, and in turn, more self-reported
happiness15,16. Similarly, a user’s social media activity increases
after a post, suggestive of reward anticipation17, and users provide
more social feedback to others after receiving feedback them-
selves18. In addition to its direct effect on reward, the subjective
value of likes is also influenced by social comparison in a way
similar to non-social rewards3,19,20, suggesting that social
rewards, just like non-social rewards21, might be relative, rather
than absolute in nature. Together, these existing studies support
the idea that social media engagement reflects reward
mechanisms.

However, as most studies of online social rewards to date
utilize self-report methods22,23, direct evidence for a social reward
learning account of behavior on social media is lacking. Fur-
thermore, studies that do apply RL approaches to social media
data have typically not sought to delineate psychological
mechanisms underlying social media use, but instead to optimize
software that interacts with users (e.g., by training recommender
systems24). In addition, results from the few studies that have
taken a quantitative approach to human behavior are mixed. In
one study, negative evaluation of a post—a type of social pun-
ishment—led to deterioration in the quality of future posts, rather
than the improvement predicted by learning theory25. By con-
trast, in another study, receiving more replies for a post on a
specific social media discussion forum predicted a subsequent
increase in the time spent on that forum relative to others,

consistent with learning theory26. Thus, it remains unclear whe-
ther basic mechanisms of reward learning can help explain actual
behavior on social media.

In the present research, we directly test whether social media
engagement can be formally characterized as a form of reward
learning. By analyzing more than one million posts from over
4000 individual users on multiple distinct social media platforms
(see Methods), we assess, using computational modeling, how the
putative social rewards received for posts in the past (e.g., the
likes received when posting a “selfie”) can help explain future
behavior. Our computational modeling approach allows us to
explicitly test how cross-species reward learning mechanisms
contribute to this uniquely human mode of social behavior27. We
also confirm, using an online experiment resembling common
social media platforms (n= 176), that social rewards causally
influence behavior as predicted by our reward learning account.

Computational learning theory posits specific behavioral pat-
terns that would characterize online behavior as an expression of
reward learning. A seminal empirical insight is that when animals
(e.g., rodents in a Skinner box) can select the timing of their
instrumental responses (e.g., when and how often to press a
lever), the latency of responding (the inverse of the response rate)
is negatively related to the rate of accrued rewards28. That is, a
lower reward rate produces longer response latencies. Reinfor-
cement learning theory provides both a normative explanation
and a mechanistic machinery for this regularity: the more reward
one receives, the shorter the average latency between responses
should be, because acting more slowly results in a longer delay to
the next reward, and the cost of this delay—the opportunity cost
of time—is directly related to the average reward rate29. As
consequence, when animals have learned, through interaction
with the environment, that the average reward rate is higher,
actions should be made faster because further rewards would be
foregone by slower and fewer responses.

Although this RL theory was developed to explain animal
behavior in laboratory tasks, on timescales of seconds and min-
utes, the theoretical relationship between the average reward rate
and response latency is not tied to a specific timescale. Conse-
quently, if social media taps into basic learning mechanisms,
social media behavior should exhibit the same relationship
between response latency—the time between successive social
media posts—and the (social) reward rate. In other words, we
hypothesize that a type of real-life behavior, on timescales rarely,
if ever, investigated in the laboratory, exhibits this key signature
of reward learning. Finally, we confirm the causal influence of the
social reward rate on posting response latencies with an online
experiment, designed to mimic key aspects of social media
platforms.

Results
Reward learning on social media. We tested our hypothesis that
online social behavior, in the form of posts, follows principles of
reward learning theory in four independent social media datasets
(see Methods) (total NObs= 1,046,857, NUsers= 4,168) with
computational modeling. These datasets came from four distinct
social media platforms, where people post pictures and, in
response, receive social reward in the forms of “likes.” In Study 1
(NUsers= 2,039), we tested our hypothesis in a large dataset of
Instagram posts30 (average number of posts per individual= 418,
see Supplementary Table 1 for additional descriptive statistics).
Instagram exemplifies modern social media, with over 1 billion
registered users, and its format—focused primarily on simple
postings and the receipt of likes as feedback—makes it a unique
case study. However, because there are significant economic
motives on Instagram and similar platforms31, an assessment of
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reward learning on Instagram could be limited to some extent by
the possibility of fraudulent accounts and “fake likes,” among
other strategic uses32. We therefore replicated and extended
Study 1 in Study 2 (NUsers= 2,127) with data from three different
topic-focused social media sites (discussion forums focused on
Men’s fashion, Women’s fashion, and Gardening, see Methods),
where economic motives are less likely (average number of posts
per individual= 91, see Supplementary Table 1 for descriptive
statistics). Finally, we conducted an online experiment (Study 3,
NParticipants= 176), designed to mimic key aspects of social media
platforms, in which we manipulated the social reward rate to
verify its causal impact on response latencies.

Social rewards predict social media posting. We conceptualized
the act of posting on a social media platform (e.g., Instagram) as
free-operant behavior in a Skinner box with one response option
(e.g., a single lever), where responses are followed by reward (i.e.,
likes). As outlined, a key prediction from learning theory for such
situations, in which the agent can decide when to respond, is that
the latency between responses should be affected by the average
rate of rewards28,29. Before formally testing our computational
hypothesis, we evaluated, in two complementary and model-
independent ways, whether social media behavior was sensitive to
social rewards.

First, we drew inspiration from classic work in animal learning
theory, which established that response rates, an aggregate
measure of response latency, typically follow a saturating positive
(i.e., hyperbolic) function of reward rates28. This relationship,
known as the quantitative law of effect28, is a signature of reward
driven behavior (especially on interval schedules of reinforce-
ment28). To directly test whether social media behavior exhibits
this pattern, we compared how well a hyperbolic function
explained the relationship between likes and response rates
relative to a linear function (Supplementary Note 1). We found
that the “quantitative law of effect” explained behavior better than
a linear relationship in all four social media datasets (mean R2:
Study 1= 0.43, Study 2:= 0.37, see Supplementary Note 1),
demonstrating that an aggregate measure of response latencies on
social media exhibits a classic signature of reward learning28.

Second, we defined a high resolution measure of response
latency (τPost) as the time between two successive social media
posts (similar to the interval between responses in human
laboratory tasks and in animal free-operant behavior, see Fig. 1),

and tested whether τPost was predicted by the history of likes
using Granger causality analysis (see Methods). Granger causality
is established if a variable (e.g., likes) improves on the prediction
of a second variable (e.g., τPost) over and above earlier (lagged)
values of the second variable in itself. To ascertain the selectivity
of this method, we first applied it to simulated data from
generative models where the ground truth was known (causality
or no causality). We then fine-tuned the analysis parameters (the
lag number, see Supplementary Note 2) to reliably detect Granger
causality in data simulated from our reward learning model,
which we introduce next, but not from models without learning
(in which likes are unrelated to behavior, see Supplementary Note
2). Applying this optimized analysis method to the empirical data
showed that likes Granger-caused τPost in all four datasets (Study
1: Z̃= 23.65, p < 0001; Study 2: Men’s Fashion: Z̃= 3.94, p < 0001;
Women’s Fashion: Z̃= 14.16, p < 0001; Gardening: Z̃= 6.78, p <
0001). Together, these results demonstrate that the history of
social rewards (i.e., likes) influenced both the rate and the time
distribution of social media posting. Such reward sensitivity is a
minimal criterion for more formally testing the explanatory
power of learning theory.

Modeling the dynamics of social media behavior. Having
established that social media behavior is sensitive to reward, we
next developed a generative model, based on RL theory of free-
operant behavior in non-human animals29. The key principle of
this theory is that agents should balance the effort costs of
responding and the opportunity costs of passivity (i.e., the
posting-related rewards one misses while not posting) to max-
imize the average net (i.e., gains minus losses) reward rate29. The
consequence is that average response latencies should be shorter
when the average reward rate is higher. This prediction holds
both when the amount of reward is a direct function of the
number of responses (i.e., ratio schedules of reinforcement) and
when rewards become available at specific time points (i.e.,
interval schedules of reinforcement).

Building directly on these principles, our �RL model specifies
how agents adjust the latency of their responses to maximize the
average net reward rate �R (see Methods and Supplementary
Methods). Hence, the model provides a formal account of our
hypothesis that behavior on social media conforms to basic
principles of reward learning. Formally, the model conceptualizes
social media use as a sequence of decisions regarding the latency
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Fig. 1 Schematic illustration of the computational hypothesis. a The �RL model describes how τPost, the latency to the next social media post (denoted by
the “camera” icon), is shaped by social rewards. Each post is followed by social reward (denoted by the “heart” symbol), which varies in number. The
model adjusts the response policy, or threshold, which determines τPost, to maximize the average net rate of reward. b The �RL model posits an effort cost to
responding (e.g., taking pictures, uploading), which decreases as a function of τPost. The effort cost term penalizes posting in quick succession, because high
effort reduces the average reward rate. c The opportunity cost of time increases as a function of the average reward rate �R. The gradient of red lines
indicates increasing values of �R (darker colors represent higher values), and thereby higher opportunity cost. d The optimal value of τPost, which maximizes
the net reward δ, varies as function of �R (darker colors represent higher values). The δ is used to update average reward rate �R. Note that the optimum,
indicated by the peak of the function, moves to shorter response latencies when �R is higher because the opportunity cost of time increases with �R. The
horizontal line denotes 0. The figure assumes a constant effort cost C. e Simulated model predictions. The �RL model predicts that τPost, the latency between
successive social media posts, will be shorter with high compared to low average reward rate, �R. The simulation involved N= 1000 independent synthetic
individuals. The prediction is presented as estimated mean ± 99% CI from mixed-effects regression.
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between successive posts, τPost (Fig. 1a)29, where the agent
maximizes the reward rate by adaptively adjusting τPost after
observing each accrued reward. Psychologically, τPost can be
thought of as the accumulation of motivation towards a threshold
for posting (in similarity to the boundary in evidence accumula-
tion models of decision-making33). The model policy, or
threshold, which determines τPost,, is dynamically adjusted based
on the net reward prediction error, δ, the difference between the
experienced reward and the reference level. The reference level is
determined both by the individual’s effort cost sensitivity (e.g., the
subjective cost of taking pictures and uploading) and the
subjective estimate of the average net reward rate �R29,34, which
determines the opportunity cost of slow responding (Fig. 1b, c).
Both the effort cost and opportunity cost depend on the response
latency, τPost. In other words, the optimal response latency
balances these two costs to maximize the net reward δ (Fig. 1d).
The subjective estimate of �R is updated using the same reward
prediction error, thereby reflecting the integration of prediction
errors across time29. In total, the model has three free parameters:
learning rate, ɑ; initial policy, P; and effort cost sensitivity, C (see
Methods). We verify with simulations that our �RL model
accurately reproduces standard patterns of animal behavior in
Skinner boxes (Supplementary Methods and Supplementary
Fig. 1). This demonstrates the validity of the �RL model as an
account of instrumental reward learning.

We simulated the model (~250,000 data points from
1000 simulated users, with random parameter values, see
Supplementary Methods for details) to generate predictions for
reward learning on social media. According to learning theory,
τPost should be lower when the average reward rate is relatively
higher. To verify this prediction in a simple manner, we rank-
transformed and standardized �R for each synthetic user and then
dichotomized the variable at 0 to produce a qualitative “Low vs
High �R” predictor (nearly identical results are observed with
other definitions, see Supplementary Table 7). To facilitate
subsequent comparison with empirical analyses, we summarized
the simulated data using mixed-effects models. These analyses
revealed a clear effect of low vs. high �R on τPost (β= 0.18, SE=
0.007, t= 31, p < 0001), as expected. In other words, the model
predicts (given the set of simulation parameters) that average
response latencies should be ~18% longer when the average
reward rate is low versus high (see Fig. 1e).

Our empirical analysis of the four social media platforms tested
these model-based predictions with model estimation, statistical
analyses, and generative model simulations. We optimized the
parameters of the �RL model for each individual user and
quantitatively compared the explanatory value of the �RL model to
a null model without reward learning (see Supplementary
Methods; model estimation and comparison procedure recovered
the models with high probability, Supplementary Fig. 2). The null
model assumes that posting on social media reflects a stable
behavioral tendency (i.e., average response latency, one free
parameter), which is not affected by reward. The model
comparison provides a direct, quantitative test of reward learning
as an explanation for social media use.

Study 1. We first modeled online behavior in the Instagram
dataset of Study 130. Model comparison showed that the �RL
model accounted better for the time distribution of responses
(τPost) than the model without learning for ~70% of the users
(mean individual-level Akaike Information Criterion weight
(AICW)= 0.7, 99% CI [0.68, 0.81], one-sample t-test relative to
equal AICW for the two models: t(2038)= 23.1, p < 0001, see
Fig. 2a). The AICW expresses the relative likelihood of one model
over another35. Equivalently, Bayesian random effects model

comparison36 showed that the �RL model was more common than
the model without learning (exceedance probability [xp]= 1),
and classified ~70% of individuals as better explained by the �RL
model.

This conclusion was robust to the removal of individuals with
especially short or long (outside the 20th and 80th deciles) average
τPost, or with few (or many) posts (see Supplementary Note 3),
which confirms that the fit of the �RL model was not driven by
outliers. Similarly, splitting the dataset into four equally sized
partitions showed that the �RL model was the most common in all
four partitions (mean AICW: 0.68–0.73, t-test against equal AICW:
t(508)= 9.63−13.9, ps < 0001), which indicates that our conclu-
sion is robust to sample idiosyncrasies and dataset size.
Interestingly, we found that individuals with more Instagram
followers exhibited non-linearly diminishing subjective value
(utility) of likes, or in other words, derived less subjective value
from each like (see Supplementary Note 4). This suggests that
individuals with many followers might habituate to likes.

According to our theoretical framework, responses should be
faster when the subjective reward rate is higher. Similar to how
we derived model predictions (c.f., Fig. 1d), we used the model-
based estimate of �R (at t−1) dichotomized into “Low vs High” to
predict the empirical τPost (at t), using log-linear mixed models
(see Methods; the same conclusions are reached using continuous
measures and regression models with cluster-corrected standard
errors, see Supplementary Note 8 & Supplementary Table 7). In
support of the hypothesis that people learn to maximize social
rewards, the latency between posts, τPost, was lower when �R was
relatively high (Instagram (NObs= 851,946, NUsers= 2,039): β=
−0.18, SE= 0.003, t=−54.59, p < 0001, see Fig. 2b. Expressed in
model comparison terms, the AICW for the regression model
including �R was 1). Thus, increasing the average subjective
reward rate from low to high reduced average latency between
posts by ~18%, corresponding to ~8 h. Based on analysis with a
continuous �R term, this corresponds to a reduction of 0.34% (~5
min) in average posting latencies for each 1% increase in the
subjective reward rate. Providing additional support for the logic
of the �RL model, the effect of �R on posting latencies was stronger
for individuals for whom the �RL model provided a better fit
(interaction Low vs High �R * AICW [centered at 0.5]: β=−0.04,
SE= 0.008, t=−5.5, p < 0001). To ascertain the unique effects of
our variables of interest, we adjusted for R(t−1) (the number of
likes received at post t−1), the specific post number, and the
weekday of the preceding post in these analyses. We illustrate the
relationship between τPost, �R, and the model policy in Fig. 2c, d,
which displays the posting behavior of an example individual
over a period of two years. Together, these findings strongly
indicate that online behavior conforms to principles of reward
learning.

Study 1: Alternative models. To test the specificity of the �RL
model, we compared it with a set of plausible alternative models
(see Supplementary Note 6). Specifically, we examined models (i)
without effort cost (C) or net reward rate (�R) parameters, (ii)
where the effort cost was fixed, or increased (rather than
decreased) with post latencies, (iii) without an instrumental
response policy, and (iv) based on foraging theory. Each of these
provided worse accounts of the data than the �RL model (see
Supplementary Note 6, and Supplementary Tables 3–6).

Study 1: model simulations. In addition to demonstrating a
model’s superior fit to the data, strong support for a model
depends on its ability to reproduce the effects of interest37. To
confirm the model fitting results, we therefore generatively
simulated the �RL model (based on the median best fitting
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parameters, but independent of the empirical data) and used
mixed-effects models to summarize the simulations38. Notably,
the simulation makes very limited assumptions of how likes were
generated (i.e., as random draws from a Poisson distribution, with
identical parameters for all individuals, see Supplementary
Methods for additional details). Nonetheless, we found that the
simple reward learning ð�RLÞ model reproduced the observed
difference in response latency between high and low �R (Fig. 2b).

Study 2. To replicate and extend the results of Study 1, we col-
lected data from three distinct social media sites (see Methods)
which, in contrast to Instagram, focus on special interest topics
(Men’s fashion, Women’s fashion, Gardening, respectively).
Much activity on these social media sites is focused on textual
exchange rather than images, but all three contain prolific
“threads”—collections of posts focused on a specific topic—with
predominantly image-based content (e.g., “What are you wearing
today?”, “Post pictures of your garden”), with many thousands of
posts each. We limited our analyses to posts with user-generated
images from such threads (see Methods and Supplementary
Methods), but verify in the Supplementary Note 5 that the results
are qualitatively identical when including text-based posts.

We again tested the hypothesis that social media behavior
reflects social reward learning by estimating the same �RL model
as in Study 1. In all three datasets (190,721 data points from 2,127

individuals), regardless of the specific topic, model comparison
favored the �RL model over the model without learning (pooled
mean AICW= 0.77, 99% CI [0.76, 0.79], t-test against equal
model likelihoods: t(2126)= 38.84, p < 0001, xp= 1, see
Fig. 3a–c). As in Study 1, we performed several robustness
checks to verify this conclusion (see Supplementary Note 3).
These findings converge with and generalize those of Study 1,
providing platform-independent evidence that reward learning
theory can help explain social media behavior.

As in Study 1, we used the model-based estimate of �R to
predict the empirical τPost, using mixed effects regression models
(adjusting for the same covariates as in Study 1). As expected, a
higher �R predicted faster responding in all three datasets (see
Fig. 3d–f. Men’s fashion (NObs= 36,139, NUsers= 541): β=
−0.08, SE= 0.016, t=−5.1, p < 0001. Women’s fashion (NObs=
36,434, NUsers= 773): β=−0.16, SE= 0.02, t=−7.1, p < 0001.
Gardening: (NObs= 118,148, NUsers= 813): β=−0.18, SE= 0.02,
t=−12.09, p < 0001). Thus, in these respective datasets, latencies
between posts were 8%, 16%, and 18% shorter when the average
reward rate was high rather than low. This corresponds, based on
analysis with a continuous �R term, to a reduction of 0.18%,
0.41%, and 0.38% in average posting latencies for each 1%
increase in the subjective reward rate. As in Study 1, the estimated
effect of �R on posting latencies was stronger for individuals for
whom the �RL model provided a better fit (see Supplementary

1.0

1.5

τ P
os

t

τPost

τPost

0.3

0.2

D
en

si
ty

A
lC

W

0.1

0.0
150100

Posts
50

50

40

30

x

20

10

0
0 200

2.0ba

dc

1.0

0.8

0.6

0.4

0.2

0.0

Data
Model simulation

Low RRL model No learning

R
Model policy

High R

Fig. 2 Behavior on Instagram is explained by reward learning (Study 1). a Model comparison shows that the �RL model explained behavior on Instagram
(N= 2,039 independent individuals) better than a model without learning. The AICW expresses the relative likelihood for each model, and are presented as
means ± 99% CI. The horizontal line at 0.5 represents the chance level of no difference between models. The distribution of AICW is displayed in
Supplementary Fig. 3. Source data are provided as a Source Data file. b The model-derived estimate of �R, the average reward rate, predicted the latency
between posts (N= 2,039 independent individuals). As implicated by reward learning theory, the latency between posts was shorter with high compared
to low �R. Points indicate the corresponding estimates from synthetic data, based on ten generative simulation runs of the �RL model (see text for details).
The colored line denotes the average effect in the simulated data. Results are presented as means (fixed effects regression estimates) +/− 99% CI from
mixed-effects regression. c, d Model fit for an example individual. c The posting history of an individual user over 673 days was well approximated by the
�RL model. The model policy (or posting threshold) denotes the average response latency predicted by the model at a given time point. The faded purple
lines show 100 simulations of τPost from the estimated model policy, which illustrate the expected degree of variability given that policy, and how the
empirical τPost falls within this range. The yellow line indicates the model estimate of the net reward rate, �R. Note that a higher estimated �R is associated
with shorter response latencies (τPost). See Supplementary Fig. 4 for additional example individuals. Source data are provided as a Source Data file. d The
distribution of τPost for the same individual. The faded purple line shows 100 simulations of τPost from the estimated model policy. Source data are provided
as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19607-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1311 | https://doi.org/10.1038/s41467-020-19607-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Note 7). Thus, regardless of platform topic, social media behavior
conforms to model-based principles of reward maximization
through RL.

We again conducted generative model simulations of the �RL
model, based on the median estimated parameters, to test
whether the model reproduced the effect of average reward rates
on posting latencies. Corroborating Study 1, these simulations
showed that the �RL model accurately reproduced the effect of �R
observed in the data (Fig. 3d–f) (but note that the absolute level of
τPost is slightly overestimated in the Gardening dataset). Together
with Study 1, these results confirm that basic reward learning
theory provides a powerful tool for predicting and explaining the
dynamics of social media use, independent of topic.

Study 2: Social comparison in social reward learning. The
preceding analyses showed that people dynamically adjust their
social media behavior in response to their own social rewards, as
predicted by reward learning theory—a theory originally devel-
oped to test the effects of nonsocial rewards (e.g., food) in solitary
contexts. However, given the intrinsically social context of social
media use, we speculated that reward learning online could be
modulated by the rewards others receive. In the Supplementary
Note 9 we provide preliminary support for the hypothesis that
reward learning, at least on the social media platforms we ana-
lyzed in Study 2, may be modulated by social comparison.

Individual differences in reward learning on social media.
Having established that reward learning can help explain social
media behavior, we next asked whether individuals differ in the
ways they learn from rewards on social media. To address this
issue, we used the parameter estimates of the basic �RL model as a
compact but rich description of the mechanisms underlying
behavior—a kind of computational phenotype (which is

behavioral in nature and makes no direct reference to the
underlying genotype)39. Individual differences in these para-
meters can thus be viewed as differences in computational
mechanisms39 that are interpretable across domains. For exam-
ple, individual differences in learning rates have previously been
linked to both genetic40 and developmental differences41 between
individuals, while individual differences in effort cost sensitivity
have been related to the dopaminergic system42.

More specifically, we used the three parameters of the original
�RL model estimated for each individual from Study 1 & 2 (total
NUsers= 4,168), as input for k-means clustering, an unsupervised,
data-driven method for finding sub-groups in multidimensional
data. Quantitative assessment, using multiple standard criteria,
showed that four clusters gave the best sub-group solution (see
Fig. 4a and Methods). In Supplementary Note 10, we report
additional robustness analyses, which show that this cluster
solution was stable. These clusters comprised between 41% (1739
individuals) to 7% (299 individuals) of the total dataset.
Importantly, although the four datasets varied in mean τPost (as
reflected in the P parameter), the cluster assignment was not
strongly explained by dataset (Cramér’s V= 0.3; Cramér’s V is a
measure of the association between two nominal variables, where
1 denotes perfect association). This indicates that clusters
captured individual differences in computational learning
mechanisms, rather than idiosyncrasies of social media sites.

Figure 4b illustrates the four putative computational pheno-
types. For example, individuals in cluster 1 are characterized by a
relatively low learning rate (ɑ). Such individuals are especially
insensitive to social rewards in their behavior (and naturally, the
�RL learning model provided the worst fit to these individuals
relative to the model without learning: mean AICW= 0.11, vs
AICW ~ 0.77 in the other three clusters). By comparison,
individuals in cluster 2 are characterized by low effort cost and
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average learning rate, whereas cluster 4 exhibits the opposite
relationship between learning rate and effort cost (and cluster 3
an intermediate profile). Individuals in both clusters 2 and 4
therefore readily post in response to social rewards, although the
underlying mechanisms differ. In summary, the computational
phenotyping indicates that there are important individual
differences in the mechanisms underlying social media behavior.

Study 3. Finally, to provide direct evidence that the social reward
rate affects posting latencies, we conducted an online experiment
in which we experimentally manipulated social rewards and
observed posting response latencies. The experiment was
designed to capture key aspects of social media, such as Insta-
gram. Participants (n= 176) could post “memes”—typically, an
amusing image paired with a phrase that is popular on real social
media—as often and whenever they wanted during a 25 min.
online session (total number of posts= 2,206, see Supplementary
Methods for details). Participants received feedback on their posts
in the form of likes (0–19) from other ostensible online partici-
pants (“users”, see Supplementary Fig. 5 for an overview of the
experiment). Participants themselves could also indicate “likes”
for memes posted by other users. To test whether a higher social
reward rate causes shorter response latencies in posting, we
increased or decreased the average number of likes participants
received between the first and second halves of the session (low
reward: 0–9 likes/post, high reward: 10–19 likes/post, drawn from
a uniform distribution, with direction of change counter-balanced
across subjects). As expected, mixed effects regression (see
Methods) showed that the average post latency was longer when
the social reward rate was lower (0–9 likes/post) relative to higher
(10–19 likes/post): β= 0.109, SE= 0.044, z= 2.47, p= .013 (see
Fig. 5), corresponding to a 10.9% difference. Notably, participants
who reported more followers on Instagram exhibited weaker
effects of likes on their behavior (see Supplementary Note 11).
This finding parallel how individuals with more Instagram fol-
lowers in Study 1 exhibited more diminished marginal utility of
likes (see “Study 1” above and Supplementary Note 4). These
results further support the validity of our experiment in assessing
the psychology of real-world social media use. We report addi-
tional analyses and robustness checks in Supplementary Note 11.

To directly relate the experimental results of Study 3 to our
model-based analyses of online behavior in Studies 1 and 2, we
used the �RL model to generate subjective �R time series for the
subset of participants with a sufficient number of responses (see
Supplementary Note 11 for details), and used these (instead of
reward condition) to predict response latencies. In accordance
with the model fits to the real social media data (Study 1-2), the
average response latency was longer when the subjective reward
rate was low, relative to high (mixed effects regression, n= 156:
β= 0.28, SE= 0.045, z= 6.24, p < 0001). These experimental
results demonstrate that social rewards causally influence
response latencies, in support of our conclusion that social
reward rates shape real social media behavior.

Discussion
In an age where our social interactions are increasingly conducted
online, we asked what drives people to engage in social media
behavior. Across two studies of four large online datasets, we found
that social media behavior exhibited a signature pattern of reward
learning, such that computational models inspired by RL theory,
originally developed to explain the behavior of non-human animals,
could quantitatively account for online behavior. This account was
further supported by experimental data, in which manipulated
reward rates affected the latency of social media posted in line with
this reward learning model. Together, these results provide an
important advance in our understanding of people’s use of online
social media, an increasingly pervasive and profoundly con-
sequential arena for human interaction in the 21st century.

Our results provide clear evidence that behavior on social
media indeed follows principles of reward maximization, and
thereby give credence to the popular portrayal of social media
engagement as a Skinner Box for the modern human. These
observations, along with their formal modeling, have broad
implications for understanding and predicting multiple aspects of
online behavior, including dating (e.g., learning from outcomes
on dating apps), social norms, and prejudice43. For example, it
has been argued that online expressions of moral outrage, and in
turn polarization44, are fueled by social feedback, such as likes, in
accordance with the principles of reward learning45. Our findings
and theoretical framework provides a plausible mechanistic basis
for such processes, and thereby further expand the scope of
simple reinforcement learning mechanisms for explaining see-
mingly complex social behaviors, such as social exclusion38,
behavioral traditions46, and socio-cultural learning47.
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Our computational model of social media behavior draws from
RL theory originally intended to explain how non-human animals
select the vigor of their responses by encoding the average net rate
of rewards29. Apart from providing a normative explanation for
key behavioral regularities (e.g., the “matching law”28), an
important aspect of this theory is the idea that �R, the average rate
of reward, is encoded by the tonic, average level of dopamine29.
This idea has received some support in humans, where pharma-
cologically increasing the tonic level of dopamine, which accord-
ing to the theory corresponds to a higher subjective reward rate,
decreased average response latencies48. Although our behavioral
findings cannot speak to the neurobiological basis of reward
learning on social media, the link we establish between online
response latencies and the average social reward rate warrant
further exploration of the underlying brain mechanisms14.

More generally, our results indicate that dopamine inspired RL
theory may help to explain real-life individual behavior on time-
scales that are orders of magnitude larger than typically investi-
gated in the lab. In turn, this insight might contribute to a more
mechanistic perspective on both healthy and maladaptive (e.g.,
addictive4,5) aspects of social media use, with the potential to
inspire novel, theoretically grounded design solutions or inter-
ventions. Such interventions could be individualized by applying
computational phenotyping to an individual’s existing social
media record (e.g., by increasing the effort cost of posting for
individuals characterized by low C), thus providing ideographic
approaches developed from theoretical models tested on large-
scale data. Although our data do not speak directly to whether
intense social media use is maladaptive or addictive in nature, it
suggests a new approach for asking such critical questions.

Naturally, there are many possible reasons for posting on social
media in addition to reward seeking, ranging from self-expression
to relational development6. While our research focused on how
social rewards explain behavior, it does not preclude the poten-
tially important roles of other motivations. Incorporating rela-
tional considerations in the �RL model, such as reciprocity or
network proximity, represents an important goal for future
research. Nevertheless, the learning model tested here explained
behavior well, suggesting that reward learning is a major factor in
social media engagement.

Our results raise several new questions regarding the role of
reward in social media behavior. First, while our analysis of
anonymous, real-world social media data precluded demographic
characterization of users, it is possible that certain demographic
factors, such as age, may moderate the effect of reward learning in
online behavior. For example, adolescents tend to be more sen-
sitive than adults to social rewards and punishments49, and thus
our results may be particularly informative to questions of ado-
lescent social media behavior. An examination of the develop-
mental trajectories of the computational phenotypes in social
reward learning identified here, and their relations to individual
differences in psychological traits, could further illuminate age
effects in online behavior. Furthermore, while our research
focused on the effect of social rewards (i.e., likes) on posting
behavior, negative feedback, which is rampant on many social
media platforms (e.g., down votes), is also likely to drive learning.
The RL framework we proposed here may also be extended to
include such social punishments. For example, treating social
punishments as reinforcement with negative utility would, in
principle, allow direct application of the �RL model in its current
form, but it is possible that additional motivational factors, such
as negative reciprocity, also play an important role in aversely
motivated social media behavior. In addition, as we focused on
the timing, rather than the content (e.g., of images or comments),
of social media posts, an important future goal will be to char-
acterize how people learn to produce actions (e.g., posting

content, comments on others’ posts) that maximize reward. Our
�RL model could be modified to include action selection as a part
of the response policy29. Finally, our analysis in Study 2 suggests
that social comparison may contribute to reward learning on
social media by providing a social reference level for the number
of likes required to elicit a positive reward prediction error.
Although this result comports with prior research examining
social comparison on social media3,23, as well as neural reward
processing19, the correlational nature of the big data used here
necessitates caution, as other explanations cannot be ruled out.
These findings present an opportunity for future experimental
research to establish the causal nature of social comparison and to
explore its boundary conditions.

In conclusion, our findings reveal that basic reward learning
mechanisms contribute to human behavior on social media.
Understanding modern online behavior as an expression of social
reward learning mechanisms offers a new window into the psy-
chological and computational mechanisms that drive people to use
social media while illuminating the link between basic, cross-species
mechanisms and uniquely human modes of social interaction.

Methods
Social media datasets. Study 1 was based on data from a previously published
study (see30 for further information), in which data collection was based on a
random sample of individuals who partook in a specific photography contest on
Instagram in 2014. We find no evidence that contest participation was related to
posting behavior (see Supplementary Note 12). The dataset was fully anonymized.
To allow for analyses of learning, we excluded all individuals with less than 10
posts50. For Study 1, the final dataset consisted of 851,946 posts from 2,039
individuals. For Study 2, we obtained three datasets from three different topic-
focused (Men’s fashion: styleforum.net, Women’s fashion: forum.purseblog.com,
Gardening: garden.org, see Supplementary Methods for details) social media dis-
cussion forums using web scraping techniques51 on publicly accessible data. The
datasets were fully anonymized, and only included the time stamps and likes
associated with posts in prolific threads focused on user-generated images (e.g.,
pictures of one’s clothing, see Supplementary Methods). For our analyses, we
focused on posts with user-generated images, and, in analogy to Study 1, removed
all users with fewer than ten image posts. The Study 2 dataset consisted of 190,721
posts from 2,127 individuals (Men’s fashion: N= 543, Women’s fashion: N= 773,
Gardening: N= 813). This research was conducted in compliance with the US
Office for Human Research Protections regulations (45 CFR 46.101 (b)).

Experiment. The experiment was conducted on Amazon Mechanical Turk, and
approved by the ethical review board of the University of Amsterdam, The
Netherlands. See the Supplementary Methods for additional information.

Description of the �RL model. The �RL model is a policy gradient version of R-
learning52. Rather than storing action values for options and using these as a basis
for decision-making, the �RL model directly updates a parametrized response policy
(the mean parameter of an exponential distribution). This is beneficial for learning
problems with continuous action spaces (e.g., the latency between responses)53. In
close similarity to standard RL models for discrete action spaces, the �RL model
incrementally learns to adjust its actions (i.e., τPost) from prediction errors. In
contrast to standard RL approaches in psychology, the prediction errors are used to
directly adjust the response policy to maximize the undiscounted net rate of reward
rather than to update action values.

For each post, the �RL model selects τPost as a draw from an exponential
distribution, where the mean (i.e., the response policy or threshold) is dynamic:

τPostt ¼ ePolicy
t�α*�Rt ð1Þ

The initial response policy (i.e., for t= 1) was estimated as a free parameter (0 ≤
P ≤ ∞). The subtraction term in Eq. (1) implements the momentous effect of the
average reward rate (e.g., changes in motivational state), �Rt , on the response rate,
which is independent of learning29. This term, which can be thought of as
“Pavlovian” (since it is independent of instrumental behavior), slightly amplifies
the effect of the average reward rate on τPost. Model comparison and simulation
showed that this term has a small but significant contribution to model fit, but does
not affect qualitative predictions.

The response policy, which determines τPost, is adjusted based on the prediction
error, δ, the difference between the experienced reward (Rt) and the reference level:

δt ¼ Rt � C
τPostt

� �Rt*τPostt ð2Þ
The reference level explicitly takes into account both the effort cost of fast

responding and the opportunity cost of slow responding (Fig. 1b, c), which is
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determined by the subjective estimate of the average net reward �R29,34. In our
application of the model, C (0 < C ≤ ∞) is a user-specific parameter that
determines the subjective effort cost of posting (e.g., taking pictures, uploading).
This parameter penalizes posting in quick succession (e.g., posting three times in
one day is more costly than posting three times in three days; we evaluate different
effort cost formulations in the Supplementary Note 5). If actions have no intrinsic
cost, the optimal policy would be to respond as quickly as possible29,54. The last
term in Eq. (2) characterizes the opportunity cost of slow responding, which
increases with �R (Fig. 1c).

The �RL model seeks to maximize reward by dynamically updating the response
policy by the “gradient”, or slope, of reward. In short, the gradient indicates the
direction and distance to the hypothetical maximum net reward that could have
been accrued at time t. To compute the gradient, the model tracks the sequential
difference between responses (i.e., draws from the policy, which can be thought of
as exploration), and combines this quantity with the net reward prediction error
(Eq. 2).

ΔτPostt ¼ τPostt � τPostt�1 ð3Þ

Policytþ1 ¼ Policyt þ α*ΔτPostt *δ
t ð4Þ

Thereby, the model can learn the instrumental value of slower vs. faster
responses. For example, if ΔτPostt is positive, which would be the case if the
response latency at t was longer than at t−1, but δt negative, which indicates that
the net reward was lower than on average, the gradient (Eq. 4) is negative. This
results in a reduced response policy (the degree of adjustment depends on the
magnitude of both ΔτPostt and δt), and in turn shorter future response latencies. In
contrast, if both ΔτPostt and δt are either positive or negative, the response policy
will increase, which leads to longer response latencies. The average reward rate is
updated using the same reward prediction error as the policy, as it directly reflects
net reward value52:

�Rtþ1 ¼ �Rt þ α*δt ð5Þ
However, regardless of whether slower or faster responses are rewarded, an

increase in the average reward rate (Eq. 5) results in a higher opportunity cost of
time (Eq. 2), which in turn results in shorter response latencies (Eq. 2, and Fig. 1d).

If either ΔτPostt or δ
t = 0, the model can theoretically be trapped in local reward

minima. However, the stochastic policy (Eq. 1) ensures that ΔτPostt is different from
0 with exceedingly high probability, which promotes continuous search by
sacrificing convergence if the step size parameter is fixed (as the model policy will
continuously change). For simplicity, the same step size parameter ɑ (0 < ɑ ≤ 1)
was used for all update terms (Eq. 1 & 4–5). Inclusion of separate step size
parameters for the different update equations did not reliably improve (parameter
number penalized) model fit. Additional model information and estimation
methods are detailed in the Supplementary Methods.

Statistical analysis. All model estimation, simulations, and statistical analyses
were conducted using R. All reported p-values are two-tailed. Granger causality
analysis was applied to first differenced data using the plm package for panel-data
analysis (see Supplementary Methods for details)55. Mixed effects modeling was
conducted with the lme456 and glmmTMB57 packages. All log-linear mixed effects
models included a random intercept for each user. In the statistical analyses, the
dependent variable τPost was log transformed (as the time between events follows an
exponential distribution) to improve linearity. All predictors were standardized
within individual (i.e., centering within cluster) to produce individual-level esti-
mates58. Degrees of freedom, test statistics, and p-values were derived from Sat-
terthwaite approximations in the lmerTest package59. The key statistical analyses
were in addition repeated using log-linear regression models with cluster-corrected
standard errors to ensure robustness (see Supplementary Table 7). Prior to k-
means clustering, the �RL model parameter estimates were log-transformed (to
improve linearity) and standardized. The optimal number of clusters was deter-
mined using the NbClst package60.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data for Study 1 are available from ref. 30. Data for Study 2 and Study 3 are available
at the Open Science Framework (osf.io/765py/). A reporting summary for this article is
available as a Supplementary Information file. Source data are provided with this paper.

Code availability
Code for estimating the �RL and No Learning models is available at the Open Science
Framework (osf.io/765py/).
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